876 resultados para Boosted regression trees


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the case of a man with a history of complex partial seizures and severe language, cognitive and behavioural regression during early childhood (3.5 years), who underwent epilepsy surgery at the age of 25 years. His early epilepsy had clinical and electroencephalogram features of the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia (Landau-Kleffner syndrome), which we considered initially to be of idiopathic origin. Seizures recurred at 19 years and presurgical investigations at 25 years showed a lateral frontal epileptic focus with spread to Broca's area and the frontal orbital regions. Histopathology revealed a focal cortical dysplasia, not visible on magnetic resonance imaging. The prolonged but reversible early regression and the residual neuropsychological disorders during adulthood were probably the result of an active left frontal epilepsy, which interfered with language and behaviour during development. Our findings raise the question of the role of focal cortical dysplasia as an aetiology in the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the preservation of the periodic orbits of an A-monotone tree map f:T→T in the class of all tree maps g:S→S having a cycle with the same pattern as A. We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of ƒ into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees T and S (which need not be homeomorphic) are essentially preserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data characteristics and species traits are expected to influence the accuracy with which species' distributions can be modeled and predicted. We compare 10 modeling techniques in terms of predictive power and sensitivity to location error, change in map resolution, and sample size, and assess whether some species traits can explain variation in model performance. We focused on 30 native tree species in Switzerland and used presence-only data to model current distribution, which we evaluated against independent presence-absence data. While there are important differences between the predictive performance of modeling methods, the variance in model performance is greater among species than among techniques. Within the range of data perturbations in this study, some extrinsic parameters of data affect model performance more than others: location error and sample size reduced performance of many techniques, whereas grain had little effect on most techniques. No technique can rescue species that are difficult to predict. The predictive power of species-distribution models can partly be predicted from a series of species characteristics and traits based on growth rate, elevational distribution range, and maximum elevation. Slow-growing species or species with narrow and specialized niches tend to be better modeled. The Swiss presence-only tree data produce models that are reliable enough to be useful in planning and management applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: The detection of positive selection is widely used to study gene and genome evolution, but its application remains limited by the high computational cost of existing implementations. We present a series of computational optimizations for more efficient estimation of the likelihood function on large-scale phylogenetic problems. We illustrate our approach using the branch-site model of codon evolution. RESULTS: We introduce novel optimization techniques that substantially outperform both CodeML from the PAML package and our previously optimized sequential version SlimCodeML. These techniques can also be applied to other likelihood-based phylogeny software. Our implementation scales well for large numbers of codons and/or species. It can therefore analyse substantially larger datasets than CodeML. We evaluated FastCodeML on different platforms and measured average sequential speedups of FastCodeML (single-threaded) versus CodeML of up to 5.8, average speedups of FastCodeML (multi-threaded) versus CodeML on a single node (shared memory) of up to 36.9 for 12 CPU cores, and average speedups of the distributed FastCodeML versus CodeML of up to 170.9 on eight nodes (96 CPU cores in total).Availability and implementation: ftp://ftp.vital-it.ch/tools/FastCodeML/. CONTACT: selectome@unil.ch or nicolas.salamin@unil.ch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of high density planting on 'Tommy Atkins' mango trees cultivated in subhumid warm tropical climate in northeastern Brazil. Treatments consisted of five spacial arrangements of plants (8x5 m, 7x4 m, 6x3 m, 5x2 m and 4x2 m), which resulted in the following plant densities: 250 (control), 357, 555, 1,000 and 1,250 plants per hectare. Plant vegetative and reproductive variables, besides fruit quality parameters, were evaluated at seven and eight years after transplantation to the field. In general, high density planting caused reduction in vegetative and reproductive variables of individual mango trees, but had little influence on fruit quality. Above 555 plants per hectare, a significant decrease was observed in mango tree growth. Furthermore, there were decreases in the percentage of flowering, fruit yield per plant and per area. However, planting density up to 357 plants per hectare, in spite of decreasing plant growth and fruit yield per tree, increases fruit yield per area in 30% in comparison to the control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Minor protease inhibitor (PI) mutations often exist as polymorphisms in HIV-1 sequences from treatment-naïve patients. Previous studies showed that their presence impairs the antiretroviral treatment (ART) response. Evaluating these findings in a larger cohort is essential. METHODS: To study the impact of minor PI mutations on time to viral suppression and time to virological failure, we included patients from the Swiss HIV Cohort Study infected with HIV-1 subtype B who started first-line ART with a PI and two nucleoside reverse transcriptase inhibitors. Cox regression models were performed to compare the outcomes among patients with 0 and ≥ 1 minor PI mutation. Models were adjusted for baseline HIV-1 RNA, CD4 cell count, sex, transmission category, age, ethnicity, year of ART start, the presence of nucleoside reverse transcriptase inhibitor mutations, and stratified for the administered PIs. RESULTS: We included 1199 patients of whom 944 (78.7%) received a boosted PI. Minor PI mutations associated with the administered PI were common: 41.7%, 16.1%, 4.7% and 1.9% had 1, 2, 3 or ≥ 4 mutations, respectively. The time to viral suppression was similar between patients with 0 (reference) and ≥ 1 minor PI mutation (multivariable hazard ratio (HR): 1.1 [95% confidence interval (CI): 1.0-1.3], P = .196). The time to virological failure was also similar (multivariable HR:.9 [95% CI:.5-1.6], P = .765). In addition, the impact of each single minor PI mutation was analyzed separately: none was significantly associated with the treatment outcome. CONCLUSIONS: The presence of minor PI mutations at baseline has no effect on the therapy outcome in HIV infected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to estimate the stability and adaptability of pod and seed yield in runner peanut genotypes based on the nonlinear regression and AMMI analysis. Yield data from 11 trials, distributed in six environments and three harvests, carried out in the Northeast region of Brazil during the rainy season were used. Significant effects of genotypes (G), environments (E), and GE interactions were detected in the analysis, indicating different behaviors among genotypes in favorable and unfavorable environmental conditions. The genotypes BRS Pérola Branca and LViPE‑06 are more stable and adapted to the semiarid environment, whereas LGoPE‑06 is a promising material for pod production, despite being highly dependent on favorable environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant, then it was massively planted by foresters in many countries, but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity. METHODS: Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions. KEY RESULTS: Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation. CONCLUSIONS: This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.