On the preservation of combinatorial types for maps on trees


Autoria(s): Alsedà, Lluís; Juher, David; Mumbrú i Rodríguez, Pere
Data(s)

24/03/2014

Resumo

We study the preservation of the periodic orbits of an A-monotone tree map f:T→T in the class of all tree maps g:S→S having a cycle with the same pattern as A. We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of ƒ into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees T and S (which need not be homeomorphic) are essentially preserved

Identificador

http://hdl.handle.net/10256/8984

Idioma(s)

eng

Publicador

Association des Annales de l'Institut Fourier

Direitos

Tots els drets reservats

Palavras-Chave #Òrbites #Orbits
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion