994 resultados para Book-binding.
Resumo:
STUDY QUESTION Is there a contribution of the minor allele at the KRAS single nucleotide polymorphism (SNP) rs61764370 in the let-7 microRNA-binding site to endometriosis risk? SUMMARY ANSWER We found no evidence for association between endometriosis risk and rs61764370 or any other SNPs in KRAS. WHAT IS KNOWN ALREADY The rs61764370 SNP in the 3' untranslated region of the KRAS gene is predicted to disrupt a complementary binding site (LCS6) for the let-7 microRNA, and was recently reported to be at a high frequency (31%) in 132 women of varying ancestry with endometriosis compared with frequencies in a database of population controls (up to 7.6% depending on ancestry), suggesting a strong effect of this KRAS SNP in the aetiology of endometriosis. STUDY DESIGN, SIZE AND DURATION This was a case-control study with a total of 11 206 subjects. The study was performed between February 2012 and July 2012. PARTICIPANTS/MATERIALS, SETTINGAND METHODS We first investigated a possible association between common markers in KRAS and endometriosis risk from our genome-wide association (GWA) data in 3194 surgically confirmed endometriosis cases and 7060 controls of European ancestry. Although rs61764370 was not genotyped on the GWA arrays, five SNPs typed in the study were highly correlated with this variant. The rs61764370 and two SNPs highly correlated with rs61764370 were then genotyped in 933 endometriosis cases and 952 controls using the Sequenom MassARRAY platform. MAIN RESULTS AND THE ROLE OF CHANCE There was no evidence for an association between rs61764370 and endometriosis risk P = 0.411 and odds ratio = 1.10 (95% confidence intervals: 0.88-1.36). We also found no evidence for an association between the highly correlated SNP rs17387019 and endometriosis. Their minor allele frequencies in cases and controls were of 0.087-0.091 similar to the population frequency reported previously for this variant in controls. Analyses of endometriosis cases with revised American Fertility Society stage III/IV disease also showed no evidence for an association between these SNPs and endometriosis risk. LIMITATIONS AND REASONS FOR CAUTION The GWA and genotyped data sets were not independent since individuals and cases from some families overlap. Controls in our GWA study were not screened for endometriosis. WIDER IMPLICATIONS OF THE FINDINGS The key SNP, rs61764370, was genotyped in a subset of samples. Our results do not support the suggestion that carrying the minor allele at rs61764370 contributes to a significant number of endometriosis cases and rs61764370 is, therefore, unlikely to be a useful marker of endometriosis risk. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by grants from the Australian National Health and Medical Research Council and Wellcome Trust. None of the authors has competing interests for the study.
Resumo:
Digital Image
Resumo:
Alpha-Tocopherol is found to interact with the stable free radical DPPH orders of magnitude faster than ordinary phenols. It is suggested that the high reactivity arises from the coplanarity of the C-O-C framework with the aromatic ring. The rate constant of the reaction of Alpha-tocopherol with DPPH increases progressively with solvent polarity and can be quantitatively related to Kosower's Z parameter. Fatty acid derivatives slow down the reaction with DPPH due to binding with Alpha-tocopherol.
Resumo:
Wife of Samuel Eliasberg, mother of Wladimir, Helene, Rose and Georg
Resumo:
Cells are packed with membrane structures, defining the inside and outside, and the different subcellular compartments. These membranes consisting mainly of phospholipids have a variety of functions in addition to providing a permeability barrier for various compounds. These functions involve cellular signaling, where lipids can act as second messengers, or direct regulation of membrane associating proteins. The first part of this study focuses on relating some of the physicochemical properties of membrane lipids to the association of drug compounds to membranes. A fluorescence based method is described allowing for determination of the membrane association of drugs. This method was subsequently applied to a novel drug, siramesine, previously shown to have anti-cancer activity. Siramesine was found to associate with anionic lipids. Especially interesting is its strong affinity for a second messenger lipid phosphatidic acid. This is the first example of a small molecule drug compound specifically interacting with a cellular lipid. Phosphatidic acid in cells is required for the activation of many signaling pathways mediating growth and proliferation. This provides an intriguing possibility for a simple molecular mechanism of the observed anti-cancer activity of siramesine. In the second part the thermal behavior and self assembly of charged and uncharged membrane assemblies was studied. Strong inter-lamellar co-operativity was observed for multilamellar DPPC vesicles using fluorescence techniques together with calorimetry. The commonly used membrane models, large unilamellar vesicles (LUV) and multilamellar vesicles (MLV) were found to possess different biophysical properties as interlamellar interactions of MLVs drive segregation of a pyrene labeled lipid analogue into clusters. The effect of a counter-ion lattice on the self assembly of a cationic gemini surfactant was studied. The presence of NaCl strongly influenced the thermal phase behavior of M-1 vesicles, causing formation of giant vesicles upon exceeding a phase transition temperature, followed by a subsequent transition into a more homogenous dispersion. Understanding the underlying biophysical aspects of cellular membranes is of fundamental importance as the complex picture of the structure and function of cells is evolving. Many of the cellular reactions take place on membranes and membranes are known to regulate the activity of many peripheral and intergral membrane associating proteins. From the point of view of drug design and gene technology, membranes can provide an interesting target for future development of drugs, but also a vehicle sensitive for environmental changes allowing for encapsulating drugs and targeting them to the desired site of action.
Latent TGF-β binding proteins -3 and -4 : transcriptional control and extracellular matrix targeting
Resumo:
Extracellular matrix (ECM) is a complex network of various proteins and proteoglycans which provides tissues with structural strength and resilience. By harvesting signaling molecules like growth factors ECM has the capacity to control cellular functions including proliferation, differentiation and cell survival. Latent transforming growth factor β (TGF-β) binding proteins (LTBPs) associate fibrillar structures of the ECM and mediate the efficient secretion and ECM deposition of latent TGF-β. The current work was conducted to determine the regulatory regions of LTBP-3 and -4 genes to gain insight into their tissue-specific expression which also has impact on TGF-β biology. Furthermore, the current research aimed at defining the ECM targeting of the N-terminal variants of LTBP-4 (LTBP-4S and -4L), which is required to understand their functions in tissues and to gain insight into conditions in which TGF-β is activated. To characterize the regulatory regions of LTBP-3 and -4 genes in silico and functional promoter analysis techniques were employed. It was found that the expression of LTBP-4S and -4L are under control of two independent promoters. This finding was in accordance with the observed expression patterns of LTBP-4S and -4L in human tissues. All promoter regions characterized in this study were TATAless, GC-rich and highly conserved between human and mouse species. Putative binding sites for Sp1 and GATA family of transcription factors were recognized in all of these regulatory regions. It is possible that these transcription factors control the basal expression of LTBP-3 and -4 genes. Smad binding element was found within the LTBP-3 and -4S promoter regions, but it was not present in LTBP-4L promoter. Although this element important for TGF-β signaling was present in LTBP-4S promoter, TGF-β did not induce its transcriptional activity. LTBP-3 promoter activity and mRNA expression instead were stimulated by TGF-β1 in osteosarcoma cells. It was found that the stimulatory effect of TGF-β was mediated by Smad and Erk MAPK signaling pathways. The current work explored the ECM targeting of LTBP-4S and identified binding partners of this protein. It was found that the N-terminal end of LTBP-4S possesses fibronectin (FN) binding sites which are critical for its ECM targeting. FN deficient fibroblasts incorporated LTBP-4S into their ECM only after addition of exogenous FN. Furthermore, LTBP-4S was found to have heparin binding regions, of which the C-terminal binding site mediated fibroblast adhesion. Soluble heparin prevented the ECM association of LTBP-4S in fibroblast cultures. In the current work it was observed that there are significant differences in the secretion, processing and ECM targeting of LTBP-4S and -4L. Interestingly, it was observed that most of the secreted LTBP-4L was associated with latent TGF-β1, whereas LTBP-4S was mainly secreted as a free form from CHO cells. This thesis provides information on transcriptional regulation of LTBP-3 and -4 genes, which is required for the deeper understanding of their tissue-specific functions. Further, the current work elucidates the structural variability of LTBPs, which appears to have impact on secretion and ECM targeting of TGF-β. These findings may advance understanding the abnormal activation of TGF-β which is associated with connective tissue disorders and cancer.
Resumo:
F 5792
Resumo:
The interaction of the cholinergic fluorescent probes, 1-(5-dimethyl-aminoaphthalene-1-sulfonamido) ethane-2-trimethylammonium perchlorate, 1-(5-dimethylaminonaphthalene-1-sulfonamido) pentane-5-trimethylammonium tartarate and 1-(5-dimethylaminonaphthalene-1-sulfonamido) decane-10- trimethylammonium tartarate with horse serum cholinesterase has been examined by fluorescence and n.m.r. methods. Fluorescence titrations show binding of the decane derivative to two sites on the protein whereas the lower homologs bind largely to one site. Active site inhibitors like curbamylcholine and decamethonium abolish binding of the decane derivative to the high affinity site. The inhibitors are largely without effect on the binding of the lower homologs. N.m.r. studies clearly establish immobilization of both ends of the molecule on binding in the case of the decane derivative, whereas in the lower homologs the dimethylamino group on the naphthalene ring is significantly more affected in the presence of enzyme. The probes are effective inhibitors of the enzyme with the decane derivative being two orders of magnitude more effective than its lower homologs. Based on the n.m.r., fluorescence and inhibition studies, a model for probe binding to the enzyme is advanced. It appears that the decane derivative binds with high affinity to the catalytic anionic site while the lower affinity site is assigned to a peripheral anionic site. The lower homologs probe only the peripheral site. A comparison of fluorescence, n.m.r. and inhibition studies with acetylcholinesterases from electric eel and bovine erythrocytes is presented.
Resumo:
A high-affinity riboflavin -binding protein was isolated and characterized for the first time from pregnant-rat sera by affinity chromatography on a lumiflavin-agarose column. The purified protein was homogeneous by the criteria of analytical polyacrylamide-gel disc electrophoresis, gel-filtration chromatography on Sephadex G-100 and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. It had a molecular weight of 90000+/-5000 and interacted with [14C]riboflavin with a 1:1 molar ratio with a dissociation constant (Kd) of 0.42 micron.
Resumo:
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image