865 resultados para Body, human
Resumo:
It is likely that humans have sought enhancements for themselves or their children for as long as they have recognised that improvements in individuals are a possibility. One genre of self-improvement in modern society can be called 'biomedical enhancements'. These include drugs, surgery and other medical interventions aimed at improving the mind, body or performance. This paper uses the case of human growth hormone (hGH) to examine the social nature of enhancements. Synthetic hGH was developed in 1985 by the pharmaceutical industry and was approved by the FDA for very specific uses, particularly treatment of growth hormone deficiency. However, it has also been promoted for a number of 'off label' uses, most of which can be deemed enhancements. Drugs approved for one treatment pave the way for use as enhancements for other problems. Claims have been made for hGH as a treatment for idiopathic shortness, as an anti-ageing agent and to improve athletic performance. Using the hGH case, we are able to distinguish three faces of biomedical enhancement: normalisation, repair and performance edge. Given deeply ingrained social and individual goals in American society, the temptations of biomedical enhancements provide inducement for individuals and groups to modify their situation. We examine the temptations of enhancement in terms of issues such as unnaturalness, fairness, risk and permanence, and shifting social meanings. In our conclusions, we outline the potentials and pitfalls of biomedical enhancement.
Resumo:
Exposure assessment is a critical part of epidemiological studies into the effect of mycotoxins on human health. Whilst exposure assessment can be made by estimating the quantity of ingested toxins from food analysis and questionnaire data, the use of biological markers (biomarkers) of exposure can provide a more accurate measure of individual level of exposure in reflecting the internal dose. Biomarkers of exposure can include the excreted toxin or its metabolites, as well as the products of interaction between the toxin and macromolecules such as protein and DNA. Samples in which biomarkers may be analysed include urine, blood, other body fluids and tissues, with urine and blood being the most accessible for human studies. Here we describe the development of biomarkers of exposure for the assessment of three important mycotoxins; aflatoxin, fumonisin and deoxynivalenol. A number of different biomarkers and methods have been developed that can be applied to human population studies, and these approaches are reviewed in the context of their application to molecular epidemiology research.
Resumo:
Laughter is a frequently occurring social signal and an important part of human non-verbal communication. However it is often overlooked as a serious topic of scientific study. While the lack of research in this area is mostly due to laughter’s non-serious nature, it is also a particularly difficult social signal to produce on demand in a convincing manner; thus making it a difficult topic for study in laboratory settings. In this paper we provide some techniques and guidance for inducing both hilarious laughter and conversational laughter. These techniques were devised with the goal of capturing mo- tion information related to laughter while the person laughing was either standing or seated. Comments on the value of each of the techniques and general guidance as to the importance of atmosphere, environment and social setting are provided.
Resumo:
3-Deoxyglucosone (3-DG) is a reactive dicarbonyl sugar thought to be a key intermediate in the nonenzymatic polymerization and browning of proteins by glucose. 3-DG may be formed in vivo from fructose, fructose 3-phosphate, or Amadori adducts to protein, such as N epsilon-fructoselysine (FL), all of which are known to be elevated in body fluids or tissues in diabetes. Modification of proteins by 3-DG formed in vivo is thought to be limited by enzymatic reduction of 3-DG to less reactive species, such as 3-deoxyfructose (3-DF). In this study, we have measured 3-DF, as a metabolic fingerprint of 3-DG, in plasma and urine from a group of diabetic patients and control subjects. Plasma and urinary 3-DF concentrations were significantly increased in the diabetic compared with the control population (0.853 +/- 0.189 vs. 0.494 +/- 0.072 microM, P <0.001, and 69.9 +/- 44.2 vs. 38.7 +/- 16.1 nmol/mg creatinine, P <0.001, respectively). Plasma and urinary 3-DF concentrations correlated strongly with one another, with HbA1c (P <0.005 in all cases), and with urinary FL (P <0.02 and P = 0.005, respectively). The overall increase in 3-DF concentrations in plasma and urine in diabetes and their correlation with other indexes of glycemic control suggest that increased amounts of 3-DG are formed in the body during hyperglycemia in diabetes and then metabolized to 3-DF. These observations are consistent with a role for increased formation of the dicarbonyl sugar 3-DG in the accelerated browning of tissue proteins in diabetes.
Resumo:
Smart Spaces, Ambient Intelligence, and Ambient Assisted Living are environmental paradigms that strongly depend on their capability to recognize human actions. While most solutions rest on sensor value interpretations and video analysis applications, few have realized the importance of incorporating common-sense capabilities to support the recognition process. Unfortunately, human action recognition cannot be successfully accomplished by only analyzing body postures. On the contrary, this task should be supported by profound knowledge of human agency nature and its tight connection to the reasons and motivations that explain it. The combination of this knowledge and the knowledge about how the world works is essential for recognizing and understanding human actions without committing common-senseless mistakes. This work demonstrates the impact that episodic reasoning has in improving the accuracy of a computer vision system for human action recognition. This work also presents formalization, implementation, and evaluation details of the knowledge model that supports the episodic reasoning.
Resumo:
In this paper we conduct a number of experiments to assess the impact of typical human body movements on the signal characteristics of outdoor body-to-body communications channels using flexible patch antennas. A modified log-distance path loss model which accounts for body shadowing and signal fading due to small movements is used to model the measured data. For line of sight channels, in which both ends of the body-to-body link are stationary, the path loss exponent is close to that for free space, although the received signal is noticeably affected by involuntary or physiological-related movements of both persons. When one person moves to obstruct the direct signal path between nodes, attenuation by the person's body can be as great as 40 dB, with even greater variation observed due to fading. The effects of movements such as rotation, tilt, walking in line of sight and non-line of sight on body-to-body communications channels are also investigated in this study. © 2011 IEEE.
Resumo:
We investigate whether the presence of a human body in wearable communications should be considered as part of the radiating structure or as part of the local radio environment. The Rician $K$ -factor was employed as a quantitative measure of the effect of the user's body for five environments and two mounting locations. Presented empirical results indicated that the environment had a greater impact on the $K$-factor values than the position of the transmit antenna for the ultrawideband signals used, confirming that the human body should be considered primarily as part of the overall radiating system when the antenna is worn on the body. Furthermore, independent variations also existed in the $K$-factor values for the differing antenna-body mounting positions, indicating that as the position changed, then the radiating effects and the contribution from the body changed. This is significant for ensuring body-antenna systems are accurately modeled in system-level simulations.
Resumo:
The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. Key Points Channel models for body centric comms ©2014. The Authors.
Resumo:
Average height is an important indicator of people’s well-being. It is also a relatively undistorted and easy-to-measure indicator, which makes it particularly suitable for comparisons across time and space. Drawing upon an extensive body of research, the chapter describes the strengths and weaknesses of this indicator. It finds that during the 19th century, average height in Western Offshoots was much higher than elsewhere. Differences between Western Europe and the rest of the world (Eastern Europe, East Asia) were marginal, in spite of the much higher real incomes in the former region. This changed after about 1870, when people’s height began to increase in Western Europe, whereas this lagged behind elsewhere. Africans were relatively tall during much of the period studied, but experienced declining height in many countries after the 1960s. People in Southeast Asia stayed relatively short throughout the period.
Resumo:
The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.
Resumo:
In this paper we compare a number of the classical models used to characterize fading in body area networks (BANs) with the recently proposed shadowed ț–ȝ fading model. In particular, we focus on BAN channels which are considered to be susceptible to shadowing by the human body. The measurements considered in this study were conducted at 2.45 GHz for hypothetical BAN channels operating in both anechoic and highly reverberant environments while the person was moving. Compared to the Rice, Nakagami and lognormal fading models, it was found that the recently proposed shadowed țμ fading model provided an enhanced fit to the measured data.
Resumo:
In this paper a 3D human pose tracking framework is presented. A new dimensionality reduction method (Hierarchical Temporal Laplacian Eigenmaps) is introduced to represent activities in hierarchies of low dimensional spaces. Such a hierarchy provides increasing independence between limbs, allowing higher flexibility and adaptability that result in improved accuracy. Moreover, a novel deterministic optimisation method (Hierarchical Manifold Search) is applied to estimate efficiently the position of the corresponding body parts. Finally, evaluation on public datasets such as HumanEva demonstrates that our approach achieves a 62.5mm-65mm average joint error for the walking activity and outperforms state-of-the-art methods in terms of accuracy and computational cost.
Resumo:
Despite the importance of laughter in social interactions it remains little studied in affective computing. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received almost no attention. The aim of this study is twofold: first an investigation into observers' perception of laughter states (hilarious, social, awkward, fake, and non-laughter) based on body movements alone, through their categorization of avatars animated with natural and acted motion capture data. Significant differences in torso and limb movements were found between animations perceived as containing laughter and those perceived as nonlaughter. Hilarious laughter also differed from social laughter in the amount of bending of the spine, the amount of shoulder rotation and the amount of hand movement. The body movement features indicative of laughter differed between sitting and standing avatar postures. Based on the positive findings in this perceptual study, the second aim is to investigate the possibility of automatically predicting the distributions of observer's ratings for the laughter states. The findings show that the automated laughter recognition rates approach human rating levels, with the Random Forest method yielding the best performance.
Resumo:
Despite its importance in social interactions, laughter remains little studied in affective computing. Intelligent virtual agents are often blind to users’ laughter and unable to produce convincing laughter themselves. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received less attention. The aim of this study is threefold. First, to probe human laughter perception by analyzing patterns of categorisations of natural laughter animated on a minimal avatar. Results reveal that a low dimensional space can describe perception of laughter “types”. Second, to investigate observers’ perception of laughter (hilarious, social, awkward, fake, and non-laughter) based on animated avatars generated from natural and acted motion-capture data. Significant differences in torso and limb movements are found between animations perceived as laughter and those perceived as non-laughter. Hilarious laughter also differs from social laughter. Different body movement features were indicative of laughter in sitting and standing avatar postures. Third, to investigate automatic recognition of laughter to the same level of certainty as observers’ perceptions. Results show recognition rates of the Random Forest model approach human rating levels. Classification comparisons and feature importance analyses indicate an improvement in recognition of social laughter when localized features and nonlinear models are used.
Resumo:
It has previously been shown that human body shadowing can have a considerable impact on body-to-body communications channels in low multipath environments. Signal degradation directly attributable to shadowing when one user's body obstructs the main line of sight can be as great as 40 dB. When both people's bodies obstruct the direct line of sight path, the communications link can be lost altogether even at very short distances of a few metres. In this paper, using front and back positioned antennas, we investigate the utility of a simple selection combination diversity combining scheme with the aim of mitigating human body shadowing in outdoor body-to-body communications channels at 2.45 GHz. Early results from this work are extremely promising, indicating substantial diversity gains, as great as 29 dB, may be achieved in a number of everyday scenarios likely to be encountered in body-to-body networking. © 2012 IEEE.