933 resultados para Atmospheric electrical discharges
Resumo:
The rapid stopping of specific parts of movements is frequently required in daily life. Yet, whether selective inhibitory control of movements is mediated by a specific neural pathway or by the combination between a global stopping of all ongoing motor activity followed by the re-initiation of task-relevant movements remains unclear. To address this question, we applied time-wise statistical analyses of the topography, global field power and electrical sources of the event-related potentials to the global vs selective inhibition stimuli presented during a Go/NoGo task. Participants (n = 18) had to respond as fast as possible with their two hands to Go stimuli and to withhold the response from the two hands (global inhibition condition, GNG) or from only one hand (selective inhibition condition, SNG) when specific NoGo stimuli were presented. Behaviorally, we replicated previous evidence for slower response times in the SNG than in the Go condition. Electrophysiologically, there were two distinct phases of event-related potentials modulations between the GNG and the SNG conditions. At 110âeuro"150 ms post-stimulus onset, there was a difference in the strength of the electric field without concomitant topographic modulation, indicating the differential engagement of statistically indistinguishable configurations of neural generators for selective and global inhibitory control. At 150âeuro"200 ms, there was topographic modulation, indicating the engagement of distinct brain networks. Source estimations localized these effects within bilateral temporo-parieto-occipital and within parieto-central networks, respectively. Our results suggest that while both types of motor inhibitory control depend on global stopping mechanisms, selective and global inhibition still differ quantitatively at early attention-related processing phases.
Resumo:
The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively
Resumo:
The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the soil moisture and ocean salinity (SMOS) end-to-end performance simulator (SEPS). The brightness temperature generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This high-resolution generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. Results are compared to brightness temperatures that are computed under the assumption of an ellipsoidal Earth.
Resumo:
Changes in the dynamics of sediment transport in a Mediterranean lake (sediment fluidization events) are linked to atmospheric circulations patterns (trough monthly precipitation). In the basins of Lake Banyoles, located in the northeast of Spain, water enters mainly through subterranean springs, and associated fluctuations in the vertical migration of sediment distribution (fluidization events) present episodic behavior as a result of episodic rainfall in the area. The initiation of the fluidization events takes place when the monthly rainfall is ∼2.7 times greater than the mean monthly rainfall of the rainiest months in the area, especially in spring (April and May), October, and December. The duration of these events is found to be well correlated with the accumulated rainfall of the preceding 10 months before the process initiation. The rainfall, in turn, is mainly associated with six atmospheric circulation patterns among the 19 fundamental circulations that emerged in an earlier study focused on significant rainfall days in Mediterranean Spain. Among them, accentuated surface lows over the northeast of Spain, general northeasterly winds by low pressure centered to the east of Balearic Islands and short baroclinic waves over the Iberian Peninsula, with easterly flows over the northeastern coast of Spain, are found the most relevant atmospheric circulations that drive heavy rainfall events
Resumo:
The aim of this project is to accomplish an application software based on Matlab to calculate the radioelectrical coverage by surface wave of broadcast radiostations in the band of Medium Wave (WM) all around the world. Also, given the location of a transmitting and a receiving station, the software should be able to calculate the electric field that the receiver should receive at that specific site. In case of several transmitters, the program should search for the existence of Inter-Symbol Interference, and calculate the field strenght accordingly. The application should ask for the configuration parameters of the transmitter radiostation within a Graphical User Interface (GUI), and bring back the resulting coverage above a map of the area under study. For the development of this project, it has been used several conductivity databases of different countries, and a high-resolution elevation database (GLOBE). Also, to calculate the field strenght due to groundwave propagation, it has been used ITU GRWAVE program, which must be integrated into a Matlab interface to be used by the application developed.
Resumo:
The objective of this analysis was to evaluate mortality among a cohort of 24,865 capacitor-manufacturing workers exposed to polychlorinated biphenyls (PCBs) at plants in Indiana, Massachusetts, and New York and followed for mortality through 2008. Cumulative PCB exposure was estimated using plant-specific job-exposure matrices. External comparisons to US and state-specific populations used standardized mortality ratios, adjusted for gender, race, age and calendar year. Among long-term workers employed 3 months or longer, within-cohort comparisons used standardized rate ratios and multivariable Poisson regression modeling. Through 2008, more than one million person-years at risk and 8749 deaths were accrued. Among long-term employees, all-cause and all-cancer mortality were not elevated; of the a priori outcomes assessed only melanoma mortality was elevated. Mortality was elevated for some outcomes of a priori interest among subgroups of long-term workers: all cancer, intestinal cancer and amyotrophic lateral sclerosis (women); melanoma (men); melanoma and brain and nervous system cancer (Indiana plant); and melanoma and multiple myeloma (New York plant). Standardized rates of stomach and uterine cancer and multiple myeloma mortality increased with estimated cumulative PCB exposure. Poisson regression modeling showed significant associations with estimated cumulative PCB exposure for prostate and stomach cancer mortality. For other outcomes of a priori interest--rectal, liver, ovarian, breast, and thyroid cancer, non-Hodgkin lymphoma, Alzheimer disease, and Parkinson disease--neither elevated mortality nor positive associations with PCB exposure were observed. Associations between estimated cumulative PCB exposure and stomach, uterine, and prostate cancer and myeloma mortality confirmed our previous positive findings.
Resumo:
Tiivistelmä: Turvekasvualustan sähkönjohtavuuden ja vesipitoisuuden riippuvuus mitattuna TDR-käsimittarilla
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Electrical transport quantum effects in the In0.53Ga0.47As/In0.52Al0.48As heterostructure on silicon
Resumo:
Electrical transport in a modulation doped heterostructure of In0.53Ga0.47As/In0.52Al0.48As grown on Si by molecular beam epitaxy has been measured. Quantum Hall effect and Subnikov¿De Haas oscillations were observed indicating the two¿dimensional character of electron transport. A mobility of 20¿000 cm2/V¿s was measured at 6 K for an electron sheet concentration of 1.7×1012 cm¿2. Transmission electron microscopy observations indicated a significant surface roughness and high defect density of the InGaAs/InAlAs layers to be present due to the growth on silicon. In addition, fine¿scale composition modulation present in the In0.53Ga0.47As/In0.52Al0.48As may further limit transport properties.
Resumo:
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements.
Resumo:
Wastewater application to soil is an alternative for fertilization and water reuse. However, particular care must be taken with this practice, since successive wastewater applications can cause soil salinization. Time-domain reflectometry (TDR) allows for the simultaneous and continuous monitoring of both soil water content and apparent electrical conductivity and thus for the indirect measurement of the electrical conductivity of the soil solution. This study aimed to evaluate the suitability of TDR for the indirect determination of the electrical conductivity (ECse) of the saturated soil extract by using an empirical equation for the apparatus TDR Trase 6050X1. Disturbed soil samples saturated with swine wastewater were used, at soil proportions of 0, 0.45, 0.90, 1.80, 2.70, and 3.60 m³ m-3. The probes were equipped with three handmade 0.20 cm long rods. The fit of the empirical model that associated the TDR measured values of electrical conductivity (EC TDR) to ECse was excellent, indicating this approach as suitable for the determination of electrical conductivity of the soil solution.