975 resultados para Assembly job shop scheduling
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed, it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface typically contains information about the amount of computing capacity needed by the application. For multiprocessor platforms, the interface should also present information about the degree of parallelism. Several interface proposals have recently been put forward in various research works. However, those interfaces are either too complex to be handled or too pessimistic. In this paper we propose the generalized multiprocessor periodic resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We then derive a method to compute the interface from the application specification. This method has been implemented in Matlab routines that are publicly available.
Resumo:
This paper presents a coordination approach to maximize the total profit of wind power systems coordinated with concentrated solar power systems, having molten-salt thermal energy storage. Both systems are effectively handled by mixed-integer linear programming in the approach, allowing enhancement on the operational during non-insolation periods. Transmission grid constraints and technical operating constraints on both systems are modeled to enable a true management support for the integration of renewable energy sources in day-ahead electricity markets. A representative case study based on real systems is considered to demonstrate the effectiveness of the proposed approach. © IFIP International Federation for Information Processing 2015.
Resumo:
The S100 proteins are 10-12 kDa EF-hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF-hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll-like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self-assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal-mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid-forming capacity is also addressed, as well as the hypothesis that amyloid self-assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu.
Resumo:
We address a real world scheduling problem concerning the repair process of aircrafts’ engines by TAP - Maintenance & Engineering (TAP-ME). TAP-ME is the maintenance, repair and overhaul organization of TAP Portugal, Portugal’s leading airline, which employs about 4000 persons to provide maintenance and engineering services in aircraft, engines and components. TAP-ME is aiming to optimize its maintenance services, focusing on the reduction of the engines repair turnaround time.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.
Resumo:
The development in power systems and the introduction of decentralized generation and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which considers not only the generation, but also the management of loads through demand response programs, energy storage units, EVs and other players in a liberalized electricity markets environment. This paper proposes a methodology to be used by Virtual Power Players (VPPs), concerning the energy resource scheduling in smart grids, considering day-ahead, hour-ahead and real-time scheduling. The case study considers a 33-bus distribution network with high penetration of distributed energy resources. The wind generation profile is based on a real Portuguese wind farm. Four scenarios are presented taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour-ahead and realtime scheduling.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
An intensive use of dispersed energy resources is expected for future power systems, including distributed generation, especially based on renewable sources, and electric vehicles. The system operation methods and tool must be adapted to the increased complexity, especially the optimal resource scheduling problem. Therefore, the use of metaheuristics is required to obtain good solutions in a reasonable amount of time. This paper proposes two new heuristics, called naive electric vehicles charge and discharge allocation and generation tournament based on cost, developed to obtain an initial solution to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach and presenting a very small error concerning the objective function with a low execution time for the scenario with 2000 vehicles.
Resumo:
The operation of distribution networks has been facing changes with the implementation of smart grids and microgrids, and the increasing use of distributed generation. The specific case of distribution networks that accommodate residential buildings, small commerce, and distributed generation as the case of storage and PV generation lead to the concept of microgrids, in the cases that the network is able to operate in islanding mode. The microgrid operator in this context is able to manage the consumption and generation resources, also including demand response programs, obtaining profits from selling electricity to the main network. The present paper proposes a methodology for the energy resource scheduling considering power flow issues and the energy buying and selling from/to the main network in each bus of the microgrid. The case study uses a real distribution network with 25 bus, residential and commercial consumers, PV generation, and storage.
Resumo:
The clothing sector in several countries is still seen, in many aspects as a traditional sector with some average characteristics, nevertheless is a very important sector in terms of labour market. Globalization and de-localization are having a strong impact in the organisation of work and in occupational careers. Very few companies are able to keep a position in the market without changes in organisation of work and workers, founding different ways to face this reality according to size, capital and position. We could find two main paths: one where companies outsource production to another territory, close and/ or dismissal the workers; other path, where companies up skilled their capacities. This paper will present some results from the European project WORKS – Work organisation and restructuring in the knowledge society (6th Framework Programme), focusing the Portuguese case studies in several clothing companies in a comparative analysis with some other European countrie