826 resultados para Arithmetic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present set of studies was to explore primary school children’s Spontaneous Focusing On quantitative Relations (SFOR) and its role in the development of rational number conceptual knowledge. The specific goals were to determine if it was possible to identify a spontaneous quantitative focusing tendency that indexes children’s tendency to recognize and utilize quantitative relations in non-explicitly mathematical situations and to determine if this tendency has an impact on the development of rational number conceptual knowledge in late primary school. To this end, we report on six original empirical studies that measure SFOR in children ages five to thirteen years and the development of rational number conceptual knowledge in ten- to thirteen-year-olds. SFOR measures were developed to determine if there are substantial differences in SFOR that are not explained by the ability to use quantitative relations. A measure of children’s conceptual knowledge of the magnitude representations of rational numbers and the density of rational numbers is utilized to capture the process of conceptual change with rational numbers in late primary school students. Finally, SFOR tendency was examined in relation to the development of rational number conceptual knowledge in these students. Study I concerned the first attempts to measure individual differences in children’s spontaneous recognition and use of quantitative relations in 86 Finnish children from the ages of five to seven years. Results revealed that there were substantial inter-individual differences in the spontaneous recognition and use of quantitative relations in these tasks. This was particularly true for the oldest group of participants, who were in grade one (roughly seven years old). However, the study did not control for ability to solve the tasks using quantitative relations, so it was not clear if these differences were due to ability or SFOR. Study II more deeply investigated the nature of the two tasks reported in Study I, through the use of a stimulated-recall procedure examining children’s verbalizations of how they interpreted the tasks. Results reveal that participants were able to verbalize reasoning about their quantitative relational responses, but not their responses based on exact number. Furthermore, participants’ non-mathematical responses revealed a variety of other aspects, beyond quantitative relations and exact number, which participants focused on in completing the tasks. These results suggest that exact number may be more easily perceived than quantitative relations. As well, these tasks were revealed to contain both mathematical and non-mathematical aspects which were interpreted by the participants as relevant. Study III investigated individual differences in SFOR 84 children, ages five to nine, from the US and is the first to report on the connection between SFOR and other mathematical abilities. The cross-sectional data revealed that there were individual differences in SFOR. Importantly, these differences were not entirely explained by the ability to solve the tasks using quantitative relations, suggesting that SFOR is partially independent from the ability to use quantitative relations. In other words, the lack of use of quantitative relations on the SFOR tasks was not solely due to participants being unable to solve the tasks using quantitative relations, but due to a lack of the spontaneous attention to the quantitative relations in the tasks. Furthermore, SFOR tendency was found to be related to arithmetic fluency among these participants. This is the first evidence to suggest that SFOR may be a partially distinct aspect of children’s existing mathematical competences. Study IV presented a follow-up study of the first graders who participated in Studies I and II, examining SFOR tendency as a predictor of their conceptual knowledge of fraction magnitudes in fourth grade. Results revealed that first graders’ SFOR tendency was a unique predictor of fraction conceptual knowledge in fourth grade, even after controlling for general mathematical skills. These results are the first to suggest that SFOR tendency may play a role in the development of rational number conceptual knowledge. Study V presents a longitudinal study of the development of 263 Finnish students’ rational number conceptual knowledge over a one year period. During this time participants completed a measure of conceptual knowledge of the magnitude representations and the density of rational numbers at three time points. First, a Latent Profile Analysis indicated that a four-class model, differentiating between those participants with high magnitude comparison and density knowledge, was the most appropriate. A Latent Transition Analysis reveal that few students display sustained conceptual change with density concepts, though conceptual change with magnitude representations is present in this group. Overall, this study indicated that there were severe deficiencies in conceptual knowledge of rational numbers, especially concepts of density. The longitudinal Study VI presented a synthesis of the previous studies in order to specifically detail the role of SFOR tendency in the development of rational number conceptual knowledge. Thus, the same participants from Study V completed a measure of SFOR, along with the rational number test, including a fourth time point. Results reveal that SFOR tendency was a predictor of rational number conceptual knowledge after two school years, even after taking into consideration prior rational number knowledge (through the use of residualized SFOR scores), arithmetic fluency, and non-verbal intelligence. Furthermore, those participants with higher-than-expected SFOR scores improved significantly more on magnitude representation and density concepts over the four time points. These results indicate that SFOR tendency is a strong predictor of rational number conceptual development in late primary school children. The results of the six studies reveal that within children’s existing mathematical competences there can be identified a spontaneous quantitative focusing tendency named spontaneous focusing on quantitative relations. Furthermore, this tendency is found to play a role in the development of rational number conceptual knowledge in primary school children. Results suggest that conceptual change with the magnitude representations and density of rational numbers is rare among this group of students. However, those children who are more likely to notice and use quantitative relations in situations that are not explicitly mathematical seem to have an advantage in the development of rational number conceptual knowledge. It may be that these students gain quantitative more and qualitatively better self-initiated deliberate practice with quantitative relations in everyday situations due to an increased SFOR tendency. This suggests that it may be important to promote this type of mathematical activity in teaching rational numbers. Furthermore, these results suggest that there may be a series of spontaneous quantitative focusing tendencies that have an impact on mathematical development throughout the learning trajectory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetivou-se neste trabalho a obtenção de padrões de infestação de plantas daninhas na cultura de cana-de-açúcar com histórico de colheita mecanizada sem queima prévia da palha. Foram realizadas amostragens em 28 talhões na região de Ribeirão Preto, SP; em cada talhão foram demarcadas unidades de avaliação e coleta, na proporção de duas por hectare, que consistiram de áreas (quatro linhas de 4 metros de comprimento) mantidas sem controle de plantas daninhas e onde foram realizadas as amostragens de plantas emergidas. As amostragens foram realizadas aos 120 dias após o corte, com quadrados vazados (0,5 x 0,5 m) lançados aleatoriamente duas vezes em cada uma das unidades de avaliação e coleta. Com os dados obtidos, calculou-se a importância relativa e o índice de agregação das espécies ou grupo de espécies. Esses índices foram usados no processamento da análise de agrupamento hierárquica, utilizando como medida de semelhança a distância euclidiana e como estratégia de agrupamento o método UPGMA (Unweighted Pair-Group Method using arithmetic Averages). Foi possível distinguir quatro grupos em função da importância relativa e cinco grupos de talhões em função do índice de agregação; dentro de alguns grupos houve formação de subgrupos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present set of longitudinal studies was to explore 3-7-year-old children.s Spontaneous FOcusing on Numerosity (SFON) and its relation to early mathematical development. The specific goals were to capture in method and theory the distinct process by which children focus on numerosity as a part of their activities involving exact number recognition, and individual differences in this process that may be informative in the development of more complex number skills. Over the course of conducting the five studies, fifteen novel tasks were progressively developed for the SFON assessments. In the tasks, confounding effects of insufficient number recognition, verbal comprehension, other procedural skills as well as working memory capacity were aimed to be controlled. Furthermore, how children.s individual differences in SFON are related to their development of number sequence, subitizing-based enumeration, object counting and basic arithmetic skills was explored. The effect of social interaction on SFON was tested. Study I captured the first phase of the 3-year longitudinal study with 39 children. It was investigated whether there were differences in 3-year-old children.s tendency to focus on numerosity, and whether these differences were related to the children.s development of cardinality recognition skills from the age of 3 to 4 years. It was found that the two groups of children formed on the basis of their amount of SFON tendency at the age of 3 years differed in their development of recognising and producing small numbers. The children whose SFON tendency was very predominant developed faster in cardinality related skills from the age of 3 to 4 years than the children whose SFON tendency was not as predominant. Thus, children.s development in cardinality recognition skills is related to their SFON tendency. Studies II and III were conducted to investigate, firstly, children.s individual differences in SFON, and, secondly, whether children.s SFON is related to their counting development. Altogether nine tasks were designed for the assessments of spontaneous and guided focusing on numerosity. The longitudinal data of 39 children in Study II from the age of 3.5 to 6 years showed individual differences in SFON at the ages of 4, 5 and 6 years, as well as stability in children.s SFON across tasks used at different ages. The counting skills were assessed at the ages of 3.5, 5 and 6 years. Path analyses indicated a reciprocal tendency in the relationship between SFON and counting development. In Study III, these results on the individual differences in SFON tendency, the stability of SFON across different tasks and the relationship of SFON and mathematical skills were confirmed by a larger-scale cross-sectional study of 183 on average 6.5-year-old children (range 6;0-7;0 years). The significant amount of unique variance that SFON accounted for number sequence elaboration, object counting and basic arithmetic skills stayed statistically significant (partial correlations varying from .27 to .37) when the effects of non-verbal IQ and verbal comprehension were controlled. In addition, to confirm that the SFON tasks assess SFON tendency independently from enumeration skills, guided focusing tasks were used for children who had failed in SFON tasks. It was explored whether these children were able to proceed in similar tasks to SFON tasks once they were guided to focus on number. The results showed that these children.s poor performance in the SFON tasks was not caused by their deficiency in executing the tasks but on lacking focusing on numerosity. The longitudinal Study IV of 39 children aimed at increasing the knowledge of associations between children.s long-term SFON tendency, subitizing-based enumeration and verbal counting skills. Children were tested twice at the age of 4-5 years on their SFON, and once at the age of 5 on their subitizing-based enumeration, number sequence production, as well as on their skills for counting of objects. Results showed considerable stability in SFON tendency measured at different ages, and that there is a positive direct association between SFON and number sequence production. The association between SFON and object counting skills was significantly mediated by subitizing-based enumeration. These results indicate that the associations between the child.s SFON and sub-skills of verbal counting may differ on the basis of how significant a role understanding the cardinal meanings of number words plays in learning these skills. The specific goal of Study V was to investigate whether it is possible to enhance 3-year old children.s SFON tendency, and thus start children.s deliberate practice in early mathematical skills. Participants were 3-year-old children in Finnish day care. The SFON scores and cardinality-related skills of the experimental group of 17 children were compared to the corresponding results of the 17 children in the control group. The results show an experimental effect on SFON tendency and subsequent development in cardinality-related skills during the 6-month period from pretest to delayed posttest in the children with some initial SFON tendency in the experimental group. Social interaction has an effect on children.s SFON tendency. The results of the five studies assert that within a child.s existing mathematical competence, it is possible to distinguish a separate process, which refers to the child.s tendency to spontaneously focus on numerosity. Moreover, there are significant individual differences in children.s SFON at the age of 3-7 years. Moderate stability was found in this tendency across different tasks assessed both at the same and at different ages. Furthermore, SFON tendency is related to the development of early mathematical skills. Educational implications of the findings emphasise, first, the importance of regarding focusing on numerosity as a separate, essential process in the assessments of young children.s mathematical skills. Second, the substantial individual differences in SFON tendency during the childhood years suggest that uncovering and modeling this kind of mathematically meaningful perceiving of the surroundings and tasks could be an efficient tool for promoting young children.s mathematical development, and thus prevent later failures in learning mathematical skills. It is proposed to consider focusing on numerosity as one potential sub-process of activities involving exact number recognition in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä tutkielma käsittelee loogisia pelejä, etenkin pelaajien voittostrategioita loogisissa peleissä. Voittostrategia on strategia, jolla kahden pelaajan pelissä pelaaja voittaa pelasipa toinen pelaaja millaisia siirtoja tahansa. Tutkielman alkupuolella todistetaan, että missä tahansa kahden pelaajan äärellisessä pelissä Gn(A;W) toisella pelaajista on voittostrategia. Pääpaino on esittää logiikan ja pelien välinen yhteys. Tämä yhteys on nimeltään logiikan strateginen tasapaino, ja se muodostuu kolmesta loogisesta pelistä. Tutkielmassa esitellään tarkasti näiden pelien kulku, ja tarkastellaan milloin toisella pelaajista on voittostrategia kyseisissä loogisissa peleissä. Tutkielma mukailee Jouko Väänäsen teosta Models and Games ja osittain L.Kirbyn ja J.Parisin artikkelia Accessible Independence Results for Peano Arithmetic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

University of Toronto exams. These are in and envelope which is marked “Arts 1st year”. Included in this package are some text book pages [Latin] with the name Ham K. Woodruff written on them. The exams include: Anatomy, Arithmetic and Algebra, Medicine Chemistry, English, Euclid, French, Greek, Latin, Latin Grammar, Latin Prose (2 copies), Materia Medica and Therapeutics and Physiology for 1879. The exams for 1880 include Arithmetic and Algebra, Greek and Trigonometry. The 1881 Greek exam is also included. There is writing on some of the exams and some are worn and stained. The envelope is torn and stained and the textbook pages are slightly burned. This does not affect the text, 1879-1881.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ancrée dans le domaine de la didactique des mathématiques, notre thèse cible le « travail de l’erreur » effectué par trois enseignants dans leur première année de carrière. Libérés des contraintes associées au système de formation initiale, ces sujets assument pleinement leur nouveau rôle au sein de la classe ordinaire. Ils se chargent, entre autres, de l’enseignement de l’arithmétique et, plus précisément, de la division euclidienne. Parmi leurs responsabilités se trouvent le repérage et l’intervention sur les procédures erronées. Le « travail de l’erreur » constitue l’expression spécifique désignant cette double tâche (Portugais 1995). À partir d’un dispositif de recherche combinant les méthodes d’observation et d’entrevue, nous documentons des séances d’enseignement afin de dégager les situations où nos maîtres du primaire identifient des erreurs dans les procédures algorithmiques des élèves et déploient, subséquemment, des stratégies d’intervention. Nous montrons comment ces deux activités sont coordonnées en décrivant les choix, décisions et actions mises en œuvre par nos sujets. Il nous est alors possible d’exposer l’organisation de la conduite de ces jeunes enseignants en fonction du traitement effectif de l’erreur arithmétique. En prenant appui sur la théorie de champs conceptuels (Vergnaud 1991), nous révélons l’implicite des connaissances mobilisées par nos sujets et mettons en relief les mécanismes cognitifs qui sous-tendent cette activité professionnelle. Nous pouvons ainsi témoigner, du moins en partie, du travail de conceptualisation réalisé in situ. Ce travail analytique permet de proposer l’existence d’un schème du travail de l’erreur chez ces maîtres débutants, mais aussi de spécifier sa nature et son fonctionnement. En explorant le versant cognitif de l’activité enseignante, notre thèse aborde une nouvelle perspective associée au thème du repérage et de l’intervention sur l’erreur de calcul de divisions en colonne.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_{n+1}$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel. Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$. Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_{n+1}$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_{n+1}$, et nous prouverons \'egalement un r\'esultat quantitatif. Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Y{\i}ld{\i}r{\i}m pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_{p \mid n} (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un circuit arithmétique dont les entrées sont des entiers ou une variable x et dont les portes calculent la somme ou le produit représente un polynôme univarié. On assimile la complexité de représentation d'un polynôme par un circuit arithmétique au nombre de portes multiplicatives minimal requis pour cette modélisation. Et l'on cherche à obtenir une borne inférieure à cette complexité, et cela en fonction du degré d du polynôme. A une chaîne additive pour d, correspond un circuit arithmétique pour le monôme de degré d. La conjecture de Strassen prétend que le nombre minimal de portes multiplicatives requis pour représenter un polynôme de degré d est au moins la longueur minimale d'une chaîne additive pour d. La conjecture de Strassen généralisée correspondrait à la même proposition lorsque les portes du circuit arithmétique ont degré entrant g au lieu de 2. Le mémoire consiste d'une part en une généralisation du concept de chaînes additives, et une étude approfondie de leur construction. On s'y intéresse d'autre part aux polynômes qui peuvent être représentés avec très peu de portes multiplicatives (les d-gems). On combine enfin les deux études en lien avec la conjecture de Strassen. On obtient en particulier de nouveaux cas de circuits vérifiant la conjecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notre contexte pratique — nous enseignons à des élèves doués de cinquième année suivant le programme international — a grandement influencé la présente recherche. En effet, le Programme primaire international (Organisation du Baccalauréat International, 2007) propose un enseignement par thèmes transdisciplinaires, dont un s’intitulant Où nous nous situons dans l’espace et le temps. Aussi, nos élèves sont tenus de suivre le Programme de formation de l’école québécoise (MÉLS Ministère de l'Éducation du Loisir et du Sport, 2001) avec le développement, notamment, de la compétence Résoudre une situation-problème et l’introduction d’une nouveauté : les repères culturels. Après une revue de la littérature, l’histoire des mathématiques nous semble tout indiquée. Toutefois, il existe peu de ressources pédagogiques pour les enseignants du primaire. Nous proposons donc d’en créer, nous appuyant sur l’approche constructiviste, approche prônée par nos deux programmes d’études (OBI et MÉLS). Nous relevons donc les avantages à intégrer l’histoire des mathématiques pour les élèves (intérêt et motivation accrus, changement dans leur façon de percevoir les mathématiques et amélioration de leurs apprentissages et de leur compréhension des mathématiques). Nous soulignons également les difficultés à introduire une approche historique à l’enseignement des mathématiques et proposons diverses façons de le faire. Puis, les concepts mathématiques à l’étude, à savoir l’arithmétique, et la numération, sont définis et nous voyons leur importance dans le programme de mathématiques du primaire. Nous décrivons ensuite les six systèmes de numération retenus (sumérien, égyptien, babylonien, chinois, romain et maya) ainsi que notre système actuel : le système indo-arabe. Enfin, nous abordons les difficultés que certaines pratiques des enseignants ou des manuels scolaires posent aux élèves en numération. Nous situons ensuite notre étude au sein de la recherche en sciences de l’éducation en nous attardant à la recherche appliquée ou dite pédagogique et plus particulièrement aux apports des recherches menées par des praticiens (un rapprochement entre la recherche et la pratique, une amélioration de l’enseignement et/ou de l’apprentissage, une réflexion de l’intérieur sur la pratique enseignante et une meilleure connaissance du milieu). Aussi, nous exposons les risques de biais qu’il est possible de rencontrer dans une recherche pédagogique, et ce, pour mieux les éviter. Nous enchaînons avec une description de nos outils de collecte de données et rappelons les exigences de la rigueur scientifique. Ce n’est qu’ensuite que nous décrivons notre séquence d’enseignement/apprentissage en détaillant chacune des activités. Ces activités consistent notamment à découvrir comment différents systèmes de numération fonctionnent (à l’aide de feuilles de travail et de notations anciennes), puis comment ces mêmes peuples effectuaient leurs additions et leurs soustractions et finalement, comment ils effectuaient les multiplications et les divisions. Enfin, nous analysons nos données à partir de notre journal de bord quotidien bonifié par les enregistrements vidéo, les affiches des élèves, les réponses aux tests de compréhension et au questionnaire d’appréciation. Notre étude nous amène à conclure à la pertinence de cette séquence pour notre milieu : l’intérêt et la motivation suscités, la perception des mathématiques et les apprentissages réalisés. Nous revenons également sur le constructivisme et une dimension non prévue : le développement de la communication mathématique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’objectif principal de cette thèse est d’examiner et d’intervenir auprès des déficits de la mémoire de travail (MdeT) à l’intérieur de deux populations cliniques : la maladie d’Alzheimer (MA) et le trouble cognitif léger (TCL). La thèse se compose de trois articles empiriques. Le but de la première expérimentation était d’examiner les déficits de MdeT dans le vieillissement normal, le TCL et la MA à l’aide de deux versions de l’empan complexe : l’empan de phrases et l’empan arithmétique. De plus, l’effet de «l’oubli» (forgetting) a été mesuré en manipulant la longueur de l’intervalle de rétention. Les résultats aux tâches d’empan complexe indiquent que la MdeT est déficitaire chez les individus atteints de TCL et encore plus chez les gens ayant la MA. Les données recueillies supportent également le rôle de l’oubli à l’intérieur de la MdeT. L’augmentation de l’intervalle de rétention exacerbait le déficit dans la MA et permettait de prédire un pronostic négatif dans le TCL. L’objectif de la deuxième étude était d’examiner la faisabilité d’un programme d’entraînement cognitif à l’ordinateur pour la composante de contrôle attentionnel à l’intérieur de la MdeT. Cette étude a été réalisée auprès de personnes âgées saines et de personnes âgées avec TCL. Les données de cette expérimentation ont révélé des effets positifs de l’entraînement pour les deux groupes de personnes. Toutefois, l’absence d’un groupe contrôle a limité l’interprétation des résultats. Sur la base de ces données, la troisième expérimentation visait à implémenter une étude randomisée à double-insu avec groupe contrôle d’un entraînement du contrôle attentionnel chez des personnes TCL avec atteinte exécutive. Ce protocole impliquait un paradigme de double-tâche composé d’une tâche de détection visuelle et d’une tâche de jugement alpha-arithmétique. Alors que le groupe contrôle pratiquait simplement la double-tâche sur six périodes d’une heure chacune, le groupe expérimental recevait un entraînement de type priorité variable dans lequel les participants devaient gérer leur contrôle attentionnel en variant la proportion de ressources attentionnelles allouée à chaque tâche. Les résultats montrent un effet significatif de l’intervention sur une des deux tâches impliquées (précision à la tâche de détection visuelle) ainsi qu’une tendance au transfert à une autre tâche d’attention divisée, mais peu d’effets de généralisation à d’autres tâches d’attention. En résumé, les données originales rapportées dans la présente thèse démontrent un déficit de la MdeT dans les maladies neurodégénératives liées à l’âge, avec un gradient entre le TCL et la MA. Elles suggèrent également une préservation de la plasticité des capacités attentionnelles chez les personnes à risque de développer une démence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <>, qui s'observe dans les <>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sujet de cette thèse est l'étude des progressions arithmétiques dans les nombres entiers. Plus précisément, nous nous intéressons à borner inférieurement v(N), la taille du plus grand sous-ensemble des nombres entiers de 1 à N qui ne contient pas de progressions arithmétiques de 3 termes. Nous allons donc construire de grands sous-ensembles de nombres entiers qui ne contiennent pas de telles progressions, ce qui nous donne une borne inférieure sur v(N). Nous allons d'abord étudier les preuves de toutes les bornes inférieures obtenues jusqu'à présent, pour ensuite donner une autre preuve de la meilleure borne. Nous allons considérer les points à coordonnés entières dans un anneau à d dimensions, et compter le nombre de progressions arithmétiques qu'il contient. Pour obtenir des bornes sur ces quantités, nous allons étudier les méthodes pour compter le nombre de points de réseau dans des sphères à plusieurs dimensions, ce qui est le sujet de la dernière section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les surfaces de subdivision fournissent une méthode alternative prometteuse dans la modélisation géométrique, et ont des avantages sur la représentation classique de trimmed-NURBS, en particulier dans la modélisation de surfaces lisses par morceaux. Dans ce mémoire, nous considérons le problème des opérations géométriques sur les surfaces de subdivision, avec l'exigence stricte de forme topologique correcte. Puisque ce problème peut être mal conditionné, nous proposons une approche pour la gestion de l'incertitude qui existe dans le calcul géométrique. Nous exigeons l'exactitude des informations topologiques lorsque l'on considère la nature de robustesse du problème des opérations géométriques sur les modèles de solides, et il devient clair que le problème peut être mal conditionné en présence de l'incertitude qui est omniprésente dans les données. Nous proposons donc une approche interactive de gestion de l'incertitude des opérations géométriques, dans le cadre d'un calcul basé sur la norme IEEE arithmétique et la modélisation en surfaces de subdivision. Un algorithme pour le problème planar-cut est alors présenté qui a comme but de satisfaire à l'exigence topologique mentionnée ci-dessus.