840 resultados para Antiwetting Coatings
Resumo:
As larvae of marine invertebrates age, their response to settlement cues can change. This change can have significant consequences to both the ecology of these organisms, and to their response to antifouling coatings. This study examines how larval age affects the settlement response of larvae to two naturally derived settlement inhibitors, non-polar extracts from the algae Delisea pulchra and Dilophus marginatus, the former of which contains compounds that are in commercial development as antifoulants. Two species of marine invertebrates with non-feeding larvae were investigated: the bryozoans Watersipora subtorquata and Bugula neritina. Larval age strongly affected larval settlement, with older larvae settling at much higher rates than younger larvae. Despite having strong, inhibitory effects on young larvae, the non-polar extracts did not inhibit the settlement of older larvae to the same degree for both species studied. The results show that the effects of ecologically realistic settlement inhibitors are highly dependent on larval age. Given that the age of settling larvae is likely to be variable in the field, such age specific variation in settlement response of larvae may have important consequences for host-epibiont interactions in natural communities.
Resumo:
An examination has been carried out of the secondary passive film on Type 304 stainless steel in 0.5 M H2SO4. The characterization techniques used were electrochemical (potentiodynamic; potentiostatic, and film reduction experiments) and surface analytical. A bilayer model for the secondary passive film is proposed. It appears that next to the metal, there is a modified passive film which controls the electrochemical response; i.e., governs the current for any applied potential. On top of this modified passive film, the experimental data are consistent with a ''porous'' corrosion-product film which adds to the total film thickness but has little influence on the electrochemical response. The composition of the secondary passive film corresponds most probably to a mixed Fe/Cr oxide/hydroxide enriched in Cr3+, With a composition similar to a primary passive film.
Resumo:
Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82
Resumo:
In this paper theoretical models have been established that can account for the gas transmission through nanocomposite laminates, consisting of an oxide layer of finite permeability containing defects, on a polymer sheet of finite thickness. The defect shapes can either be in the form of long cracks or rectangular holes. The models offer a choice of exact numerical calculations or fast and intuitive analytical approximations. The experimental measurements of oxygen permeation through four different SiOx/poly (ethylene terephthalate) samples that were strained to produce distributions or cracks showed good agreement when compared with predicted results from the approximate analytic model. As a consequence of this observation, a key practical conclusion is that, because of the logarithmic dependence of transmission on the width of a crack, for a given strain it is better to have a small number of large cracks rather than a large number of small cracks. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The grain-boundary conduction of 8 mol % ytterbia-stabilized zirconia (8YbSZ) was improved markedly by precursor scavenging via the two-stage sintering process. The most significant increase in the grain-boundary conductivity was found when the sample, whose conductivity was higher than that via Al2O3-derived scavenging, was heat-treated at 1250degreesC for greater than or equal to 20 h. The formation of a stable Si-containing phase such as ZrSiO4 during the first-stage heat-treatment was suggested as one probable scavenging route from the optimal heat-treatment temperature (HTT), long duration time (>20 h) at HTT, and the stability of the formed phase up to sintering temperatures (1500degrees C). (C) 2002 The Electrochemical Society.
Resumo:
The orientation relationships between hexagonal Mo2C precipitates (H) in ferrite (B) have been determined by electron diffraction to an accuracy of +/-2degrees. With one exception, the 19 results are consistent with the previously reported Pitsch and Schrader (P/S) orientation relationship. However, these more accurate determinations show clearly that there is a systematic deviation of up to 5.5degrees from the exact P/S relationship and that this deviation consists of a small rotation about the parallel close packed directions-[100](B)//[2 (1) over bar(1) over bar0](H). The long direction of the Mo2C needles has been determined unequivocally in terms of the orientation relationship to be [100](B)//[2 (1) over bar(1) over bar0](H). Moire fringes between precipitate and matrix have been used to improve the accuracy of the orientation relationship results and to determine the lattice parameters of the carbide precipitates investigated. The Moire fringe analysis has shown small systematic departures from the exact parallelism between [100](B) and [2 (1) over bar(1) over bar0](H) along the length of Mo2C needles and a lowering of the carbide lattice parameter that is consistent with the replacement of Mo by Fe in the carbide. The orientation relationship results, including the observed systematic deviation from the exact P/S relationship, are shown to be consistent with the edge-to-edge model. (C) 2002 Kluwer Academic Publishers.
Resumo:
Convergent beam Kikuchi diffraction was used to accurately determine the orientation relationships (ORs) between austenite and martensite, and between austenite and granular bainite in two Fe-Ni-Mn-C alloys. Both martensite and granular bainite have the same crystallographic characteristics with the OR: (111)(A)parallel to(101)(F), [1 (1) over bar0](A) 2.5degrees +/- 2degrees from [1 (1) over bar(1) over bar](B).
Resumo:
The effect of test temperature, which controls the stability of austenite, on the impact toughness of a low carbon Fe-Ni-Mn-C austenitic steel and 304 stainless steel, has been investigated. Under impact conditions, stress-induced martensitic transformation occurred, in a region near the fracture surface, at test temperatures below 80degreesC for the Fe-Ni-Mn-C steel and below -25degreesC for 304 stainless steel. The former shows significant transformation toughening and the highest impact toughness was obtained at 10degreesC, which corresponds to the maximum amount of martensite formed by stress-induced transformation above the Ms temperature. The stress-induced martensitic transformation contributes negatively to the impact toughness in the 304 stainless steel. Increasing the amount of stress-induced transformation to martensite, lowered the impact toughness. The experimental results can be well explained by the Antolovich theory through the analysis of metallography and fractography. The different effect of stress-induced transformation on the impact toughness in Fe-Ni-Mn-C steel and 304 stainless steel has been further understood by applying the crystallographic model for stress-induced martensitic transformation to these two steels. (C) 2002 Kluwer Academic Publishers.
Resumo:
A new technique of surface modification by diffusion coating for AZ91D alloy was developed. A 1.0-2.0-mm alloy layer, which has hardness four to five times higher than the substrate metal, was formed after the treatment. Consequent solution treatment and aging could further improve the hardness of the alloy layer. Microstructure and chemical composition were investigated using optical microscope and electron probe.
Resumo:
A simple percolation theory-based method for determination of the pore network connectivity using liquid phase adsorption isotherm data combined with a density functional theory (DFT)-based pore size distribution is presented in this article. The liquid phase adsorption experiments have been performed using eight different esters as adsorbates and microporous-mesoporous activated carbons Filtrasorb-400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The density functional theory (DFT)-based pore size distributions of the carbons were obtained using DFT analysis of argon adsorption data. The mean micropore network coordination numbers, Z, of the carbons were determined based on DR characteristic plots and fitted saturation capacities using percolation theory. Based on this method, the critical molecular sizes of the model compounds used in this study were also obtained. The incorporation of percolation concepts in the prediction of multicomponent adsorption equilibria is also investigated, and found to improve the performance of the ideal adsorbed solution theory (IAST) model for the large molecules utilized in this study. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we present a model accounting for the adsorbate-adsorbate interaction in the adsorbed phase in the description of adsorption of pure vapors on carbonaceous materials. The details of the adsorbate-adsorbate interaction of a particular species are obtained from the analysis of its adsorption data on non-porous carbon black. The predictability of the model is tested against the adsorption isotherm data for benzene, toluene, n-pentane, n-hexane, carbon tetrachloride, methanol and ethanol on microporous activated carbon. It was found that the model prediction for non-polar adsorbates are satisfactory while it under-predicts for polar adsorbates, which is attributed to their additional interaction with functional groups. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Doped ceria (CeO2) compounds are fluorite-type oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in applications of these materials for low or intermediate temperature operation of solid-oxide fuel cells (SOFCs). In this study, the effective index was suggested to maximize the ionic conductivity in La2O3-CeO2 based oxides. The index considers the fluorite structure, and combines the expected oxygen vacancy level with the ionic radius mismatch between host and dopant cations. Using this approach, the ionic conductivity of this system has been optimized and tested under operating conditions of SOFCs. LaxCe1-xO2-delta (x = 0.125, 0.15, 0.175, and 0.20), (LaxSr1-x)(0.175)Ce0.825O2-delta (x = 0.1, 0.2, and 0.4), and (La1-xSr0.2Bax)(0.175)Ce0.825O2-delta (x 5 0.03, 0.05, and 0.07) were prepared and characterized as the specimens with low, intermediate, and high index, respectively. The ionic conductivity was increased with increasing suggested index. The transmission electron microscopy analysis suggested that partial substitution of alkaline earth elements in place of La into Ce site contributes to a decrease of microdomain size and an improvement of conductivity. (La0.75Sr0.2Ba0.05)(0.175)Ce0.825O1.891 with high index and small microdomains exhibited the highest conductivity, wide ionic domain, and good performance in SOFCs. (C) 2003 The Electrochemical Society.
Resumo:
As perdas pós-colheita de frutas promovem a elevação do custo dos produtos e diminuem a oferta ao consumidor. Suas principais causas estão na colheita, transporte e armazenamento inadequados. A aplicação de revestimentos comestíveis juntamente com a redução da temperatura de armazenamento constitui um dos métodos empregados para a conservação pós-colheita de produtos com vida útil curta, como frutas e hortaliças. O morango é um fruto consumido preferencialmente in natura. Desta forma, torna-se promissora a utilização de revestimento comestível para aumentar seu período de armazenamento e comercialização, sem alteração do sabor, da cor e do aroma dos frutos. A produção orgânica frente a convencional de frutos podem apresentar diferenças, sendo interessante o estudo envolvendo as formas de cultivo. Este estudo teve como objetivo avaliar a conservação pós-colheita de morangos cv. Camarosa, oriundos de cultivo orgânico e convencional revestidos com coberturas comestíveis. Os morangos foram revestidos com fécula de mandioca, gelatina e cera de carnaúba, armazenados durante 10 dias a 10 ºC. A cada 2 dias de armazenamento foram determinados perda de massa, sólidos solúveis, pH, acidez titulável, firmeza, antocianinas totais e podridão fúngica. Análise sensorial foi realizada para verificar a aceitação dos morangos e para avaliar a influência da informação nesta aceitação. A perda de massa foi maior no cultivo orgânico a partir do 8º dia de armazenamento, chegando a 11,47% contra 8,88% do cultivo convencional no final do 10º dia de armazenamento. O revestimento que possibilitou menor perda de massa foi o de cera de carnaúba em relação ao controle. A contaminação fúngica iniciou-se no 4º dia de armazenamento em ambos os tipos de cultivo. No 8º dia de armazenamento observou-se diferenças na podridão entre os tipos de cultivo, sendo o orgânico visualmente mais contaminado. O revestimento de cera de carnaúba apresentou menor podridão fúngica em relação aos outros revestimentos, porém não diferiu da amostra controle. Das variáveis físico-químicas avaliadas, apenas o teor de sólidos solúveis apresentou diferenças entre os tipos de cultivo, sendo o morango convencional o que obteve maiores valores. O teor de antocianinas dos morangos revestidos com fécula de mandioca diferiu do controle, porém o revestimento com fécula não diferiu dos revestidos com gelatina e cera de carnaúba. Foram verificadas diferenças na firmeza dos frutos em relação aos revestimentos. Ao longo do tempo foi observado diferenças no pH, teor de antocianinas e firmeza. O revestimento com cera de carnaúba se mostrou mais adequado em relação aos demais revestimentos, porém sua aparência mostrou-se com pouco brilho e esbranquiçado. Os frutos avaliados apresentaram vida útil pós-colheita de aproximadamente 6 dias. Os morangos, do ponto de vista microbiológico, se mostraram aptos para consumo. A aceitação dos morangos foi boa, não tendo ix diferenças significativas entre morango orgânico e convencional. O fornecimento da informação de “morango orgânico” e a apresentação de um texto adicional informativo não influenciaram na aceitação dos morangos. Entre os revestimentos testados o de cera de carnaúba se mostrou mais aplicável, os demais nas condições testadas não mostraram bons resultados.