939 resultados para Anti-cancer agents
Resumo:
Naturally-occurring phytochemicals have received a pivotal attention in the last years, due to the increasing evidences of biological activities. Equisetum giganteum L., commonly known as “giant horsetail”, is a native plant from Central and South America, being largely used in dietary supplements as diuretic, hemostatic, antiinflammatory and anti-rheumatic agents [1,2]. The aim of the present study was to evaluate the antioxidant (scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radicals- RSA, reducing power- RP, β-carotene bleaching inhibition- CBI and lipid peroxidation inhibition- LPI), anti-inflammatory (inhibition of NO production in lipopolysaccharidestimulated RAW 264.7 macrophages) and cytotoxic (in a panel of four human tumor cell lines: MCF-7- breast adenocarcinoma, NCI-H460- non-small cell lung cancer, HeLa- cervical carcinoma and HepG2- hepatocellular carcinoma; and in non-tumor porcine liver primary cells- PLP2) properties of E. giganteum, providing a phytochemical characterization of its extract (ethanol/water, 80:20, v/v), by using highperformance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD–ESI/MS). E. giganteum presented fourteen phenolic compounds, two phenolic acids and twelve flavonol glycoside derivatives, mainly kaempferol derivatives, accounting to 81% of the total phenolic content, being kaempferol-O-glucoside-O-rutinoside, the most abundant molecule (7.6 mg/g extract). The extract exhibited antioxidant (EC50 values = 123, 136, 202 and 57.4 μg/mL for RSA, RP, CBI and LPI, respectively), anti-inflammatory (EC50 value = 239 μg/mL) and cytotoxic (GI50 values = 250, 258, 268 and 239 μg/mL for MCF-7, NCI-H460, HeLa and HepG2, respectively) properties, which were positively correlated with its concentration in phenolic compounds. Furthermore, up to 400 μg/mL, it did not revealed toxicity in non-tumor liver cells. Thus, this study highlights the potential of E. giganteum extracts as rich sources of phenolic compounds that can be used in the food, pharmaceutical and cosmetic fields.
Resumo:
Irradiation has been increasingly recognized as an effective decontamination technique, also ensuring the chemical and organoleptic quality of medicinal and aromatic plants 1 . The use of medicinal plants in the prevention and or treatment of several diseases has revealed satisfactory results as anti-inflammatory, antimutagenic, anti-cancer and antioxidant agents 2 . The aim of the present study was to evaluate the effects of gamma irradiation on the cytotoxic properties and phenolic composition of Thymus vulgaris L. and Menta x piperita L. (methanolic extracts). Phenolic compounds were analyzed by HPLC-DAD-ESI MS, while the cytotoxicity of the samples was assessed in MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), HeLa (cervical carcinoma), HepG2 (hepatocellular carcinoma) cell lines, as also in non-tumor cells (PLP2). Thirteen and fourteen phenolic compounds were detected in T. vulgaris and M. piperita, respectively, but none of them was affected by the irradiation up to a dose of 10 kGy. However, despite there were no changes in the cytotoxic properties of irradiated peppermint samples in tumor cell lines, the thyme samples irradiated with 10 kGy showed higher cytotoxicity in comparison with the samples submitted to other doses (2 and 5 kGy). This highlights that 10 kGy can be a suitable dose to ensure the sanitary treatment, without modifying the bioactive composition and properties of these aromatic plants.
Resumo:
Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents
Resumo:
Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields
Resumo:
Background: In the recent years natural resources are being in focus due to their great potential to be exploited in the discovery/development of novel bioactive compounds and, among them, mushrooms can be highlighted as alternative sources of anti-inflammatory agents. Scope and approach: The present review reports the anti-inflammatory activity of mushroom extracts and of their bioactive metabolites involved in this bioactive action. Additionally the most common assays used to evaluate mushrooms anti-inflammatory activity were also reviewed, including in vitro studies in cell lines, as well as in animal models in vivo. Key findings and conclusions: The anti-inflammatory compounds identified in mushrooms include polysaccharides, terpenes, phenolic acids, steroids, fatty acids and other metabolites. Among them, polysaccharides, terpenoids and phenolic compounds seem to be the most important contributors to the anti-inflammatory activity of mushrooms as demonstrated by numerous studies. However, clinical trials need to be conducted in order to confirm the effectiveness of some of these mushroom compounds namely, inhibitors of NF-κB pathway and of cyclooxygenase related with the expression of many inflammatory mediators.
Resumo:
Context: Species of Baccharis exhibit antibiotic, antiseptic, and wound-healing properties, and have been used in the traditional medicine of South America for the treatment of inflammation, headaches, diabetes, and hepatobiliary disorders.Objective: To investigate the anti-inflammatory activity of organic phases from EtOH extract of the aerial parts of Baccharis uncinella DC (Asteraceae).Materials and methods: The crude EtOH extract from the aerial parts of B. uncinella was subjected to partition procedures and the corresponding CH(2)Cl(2) and EtOAc phases were subjected to several chromatographic separation procedures. Thus, these phases and their purified compounds were assayed for evaluation of anti-inflammatory activity.Results: The CH(2)Cl(2) phase from EtOH extract from B. uncinella contained two triterpenoids (oleanolic and ursolic acids) and one flavonoid (pectolinaringenin), whereas the respective EtOAc phase showed to be composed mainly by two phenylpropanoid derivatives (caffeic and ferulic acids). The CH(2)Cl(2) and EtOAc phases as well as their isolated compounds exhibited anti-inflammatory effects against inflammatory reactions induced by phospholipase A2 (from Crotalus durissus terrificus venom) and by carrageenan.Discussion and conclusion: The results suggested that the components obtained from partition phases of EtOH extract of B. uncinella could represent lead molecules for the development of anti-inflammatory agents. Additionally, the results confirmed the use of Baccharis genus in the traditional medicine of South America for the treatment of inflammation and other heath disorders. To date, the present work describes for the first time the anti-inflammatory effects of compounds isolated from B. uncinella.
Resumo:
Despite extensive research and introduction of innovative therapy, lung cancer prognosis remains poor, with a five years survival of only 17%. The success of pharmacological treatment is often impaired by drug resistance. Thus, the characterization of response mechanisms to anti-cancer compounds and of the molecular mechanisms supporting lung cancer aggressiveness are crucial for patient’s management. In the first part of this thesis, we characterized the molecular mechanism behind resistance of lung cancer cells to the Inhibitors of the Bromodomain and Extraterminal domain containing Proteins (BETi). Through a CRISPR/Cas9 screening we identified three Hippo Pathway members, LATS2, TAOK1 and NF2 as genes implicated in susceptibility to BETi. These genes confer sensitivity to BETi inhibiting TAZ activity. Conversely, TAZ overexpression increases resistance to BETi. We also displayed that BETi downregulate both YAP, TAZ and TEADs expression in several cancer cell lines, implying a novel BETi-dependent cytotoxic mechanism. In the second part of this work, we attempted to characterize the crosstalk between the TAZ gene and its cognate antisense long-non coding RNA (lncRNA) TAZ-AS202 in lung tumorigenesis. As for TAZ downregulation, TAZ-AS202 silencing impairs NSCLC cells proliferation, migration and invasion, suggesting a pro-tumorigenic function for this lncRNA during lung tumorigenesis. TAZ-AS202 regulates TAZ target genes without altering TAZ expression or localization. This finding implies an uncovered functional cooperation between TAZ and TAZ-AS202. Moreover, we found that the EPH-ephrin signaling receptor EPHB2 is a downstream effector affected by both TAZ and TAZ-AS202 silencing. EPHB2 downregulation significantly attenuates cells proliferation, migration and invasion, suggesting that, at least in part, TAZ-AS202 and TAZ pro-oncogenic activity depends on EPH-ephrin signaling final deregulation. Finally, we started to dissect the mechanism underlying the TAZ-AS202 regulatory activity on EPHB2 in lung cancer, which may involve the existence of an intermediate transcription factor and is the object of our ongoing research.
Resumo:
Lung cancer is an heterogeneous disease, with 1-2% of rare histology. New molecular profiling technologies, such as next generation sequencing (NGS), haverevolutionized the assessment of molecular alteration in clinical practice. We analyzed a cohort of 1408 NSCLC-A patients treated at the Sant'Orsola- Malpighi University Hospital from 2019 to 2021. This analysis was performed using the oncomine focus thermo fischer panel. Of them, 410 (29%) had rare alteration (RET 3%, NTRK 0,2%,FGFR1 2%, MET exon14 skipping 3%, BRAF V600 4%, ALK fusion EGFR exon 20 2%) and 36 (2%)had a uncommon mutation. We enrolled 7 RET- rearranged patients in CRETA and J2G-MC-JZJC clinical trials assessing respectively unselective and selective RET-inhibitors , another 7 patients tested positive for the BRAF V6006 mutation and have been enrolled in the Array clinical trial assessing a novel combination of anti-BRAF and anti-mek agents . Other molecular alterations found are KRAS (Gly12Cys), FGFR1-4 mutation, MET skipping ex14 mutations, respectively eligible for other ongoing open studies such as Amgen 20190009 comparing efficacy of sotorasib vs docetaxel, Fight-207 assessing activity of pemigatinib and CINC280J12201 assessing activity of the novel met inhibitor capmatinib. In 2018 we joined the CHANCE clinical trial,a multicenter study evaluating the efficacy and safety of atezolizumab in patients withrare lung cancer histologies where and 14 patients have been so far enrolled in the Bologna site. Our studies underline the need of tailored approach to NSCLC patients and our results showed that precision medicine is feasible and is an effective approach to cancer treatment.
Resumo:
Extra cellular vesicles are membrane bound and lipid based nano particles having the size range of 30 to 1000 nm released by a plethora of cells. Their prime function is cellular communication but in the recent studies, the potential of these vesicles to maintain physiological and pathological processes as well as their nano-sized constituents opened doors to its applications in therapeutics, and diagnostics of variety of diseases such as cancer. Their main constituents include lipids, proteins, and RNAs. They are categorized into subtypes such as exosomes, micro-vesicles and apoptotic bodies In recent studies, extracellular vesicles that are derived from plants are gaining high regard due to their variety of advantages such as safety, non-toxicity, and high availability which promotes large scale production. EVs are isolated from mammalian and plant cells using multitude of techniques such as Ultracentrifugation, SEC, Precipitation and so on. Due to the variety in the sources as well as shortcomings arising from the isolation method, a scalable and inexpensive EV isolation method is yet to be designed. This study focusses on isolation of EVs from citrus lemon juice through diafiltration. Lemon is a promising source due to its biological properties to act as antioxidant, anticancer, and anti-inflammatory agents. Lemon derived vesicles was proven to have several proteins analogous to mammalian vesicles. A diafiltration could be carried out for successful removal of impurities and it is a scalable, continuous technique with potentially lower process times. The concentration of purified product and impurities are analysed using Size Exclusion Chromatography in analytical mode. It is also considered imperative to compare the results from diafiltration with gold standard UC. BCA is proposed to evaluate total protein content and DLS for size measurements. Finally, the ideal mode of storage of EVs to protect its internals and its structure is analysed with storage tests.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.
Resumo:
Syngonanthus macrolepis, popularly known in Brazil as 'sempre-vivas', is a plant from the family Eriocaulaceae, it is found in the states of Minas Gerais and Bahia. The species contains a variety of constituents, including flavonoids with gastroprotective effect. In this work, a flavonoid-rich fraction (Sm-FRF) obtained from scapes of S. macrolepis was investigated for preventing gastric ulceration in mice and rats. The activity was evaluated in models of induced gastric ulcer (absolute ethanol, stress, non-steroidal anti-inflammatory drugs and pylorus ligation). The cytoprotective mechanisms of the Sm-FRF in relation to sulfhydryl (SH) groups, nitric oxide (NO) and antioxidant enzymes were also evaluated. The Sm-FRF (100 mg/kg, p.o.) significantly reduced gastric injury in all models, and did not alter gastric juice parameters after pylorus ligation. The results indicate significant gastroprotective activity for the Sm-FRF, which probably involves the participation of both SH groups and the antioxidant system. Both are integral parts of the gastrointestinal mucosa's cytoprotective mechanisms against aggressive factors.
Resumo:
Lychnophora ericoides and Lychnophora pinaster are species used in popular medicine as analgesic or anti-inflammatory agents to treat contusions, rheumatism, and insect bites. In this study, 21 simple sequence repeat loci of L. ericoides were developed and transferred to L. pinaster. Three populations of L. ericoides and 2 populations of L. pinaster were evaluated; they were collected in the State of Minas Gerais. Population parameters were estimated, and the mean values of observed and expected heterozygosity were 0.297 and 0.408 (L. ericoides) and 0.228 and 0.310 (L. pinaster), respectively. Greater genetic variability was observed within populations than between populations of L. ericoides (62 and 37%) and L. pinaster (97 and 2.8%). These results provide information for genetic conservation and taxonomic studies of these endangered species.
Resumo:
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Resumo:
OBJECTIVE: The objective of this pilot study was to determine whether glugagon-like peptide 2 (GLP-2) secretion relates to insulin sensitivity (IS) in obese subjects. SUBJECTS AND METHODS: Twenty four obese subjects [body mass index (BMI) 40.0 ± 3.0 kg/m² (mean ± standard deviation)] were included, nine of which were male, age 43 ± 8 years. Twelve subjects had type 2 diabetes, all treated with oral anti-diabetic agents only. The subjects were submitted to standard meal tolerance test (MTT) for dosage of the curves: glucose, insulin, and GLP-2. Insulin sensitivity was measured by HOMA-IR, and OGIS was derived from the MTT. Spearman linear correlations and partial correlations were obtained. RESULTS: There was an inverse relationship between the GLP-2 secretion and IS: HOMA-IR correlated with GLP-2 AUC (R = 0.504; p = 0.012), and OGIS correlated with GLP-2 incremental AUC (R = -0.54; p = 0.054). The correlation persisted after controlling for BMI. CONCLUSION: We found an association of GLP-2 secretion and insulin resistance (IR). The understanding of the underlying mechanisms may provide future directions in the pharmacological manipulation of incretins, and in the treatment of obesity and related metabolic disorders.