982 resultados para Aircraft exhaust emissions.
Resumo:
The microbial mediated production of nitrous oxide (N2O) and its reduction to dinitrogen (N2) via denitrification represents a loss of nitrogen (N) from fertilised agro-ecosystems to the atmosphere. Although denitrification has received great interest by biogeochemists in the last decades, the magnitude of N2lossesand related N2:N2O ratios from soils still are largely unknown due to methodical constraints. We present a novel 15N tracer approach, based on a previous developed tracer method to study denitrification in pure bacterial cultures which was modified for the use on soil incubations in a completely automated laboratory set up. The method uses a background air in the incubation vessels that is replaced with a helium-oxygen gas mixture with a 50-fold reduced N2 background (2 % v/v). This method allows for a direct and sensitive quantification of the N2 and N2O emissions from the soil with isotope-ratio mass spectrometry after 15N labelling of denitrification N substrates and minimises the sensitivity to the intrusion of atmospheric N2 at the same time. The incubation set up was used to determine the influence of different soil moisture levels on N2 and N2O emissions from a sub-tropical pasture soil in Queensland/Australia. The soil was labelled with an equivalent of 50 μg-N per gram dry soil by broadcast application of KNO3solution (4 at.% 15N) and incubated for 3 days at 80% and 100% water filled pore space (WFPS), respectively. The headspace of the incubation vessel was sampled automatically over 12hrs each day and 3 samples (0, 6, and 12 hrs after incubation start) of headspace gas analysed for N2 and N2O with an isotope-ratio mass spectrometer (DELTA V Plus, Thermo Fisher Scientific, Bremen, Germany(. In addition, the soil was analysed for 15N NO3- and NH4+ using the 15N diffusion method, which enabled us to obtain a complete N balance. The method proved to be highly sensitive for N2 and N2O emissions detecting N2O emissions ranging from 20 to 627 μN kg-1soil-1hr-1and N2 emissions ranging from 4.2 to 43 μN kg-1soil-1hr-1for the different treatments. The main end-product of denitrification was N2O for both water contents with N2 accounting for 9% and 13% of the total denitrification losses at 80% and 100%WFPS, respectively. Between 95-100% of the added 15N fertiliser could be recovered. Gross nitrification over the 3 days amounted to 8.6 μN g-1 soil-1 and 4.7 μN g-1 soil-1, denitrification to 4.1 μN g-1 soil-1 and 11.8 μN g-1 soil-1at 80% and 100%WFPS, respectively. The results confirm that the tested method allows for a direct and highly sensitive detection of N2 and N2O fluxes from soils and hence offers a sensitive tool to study denitrification and N turnover in terrestrial agro-ecosystems.
Resumo:
Introducing nitrogen (N)-fixing legumes into cereal-based crop rotations reduces synthetic fertiliser-N use and may mitigate soil emissions of nitrous oxide (N2O). Current IPCC calculations assume 100% of legume biomass N as the anthropogenic N input and use 1% of this as an emission factor (EF)—the percentage of input N emitted as N2O. However, legumes also utilise soil inorganic N, so legume-fixed N is typically less than 100% of legume biomass N. In two field experiments, we measured soil N2O emissions from a black Vertosol in sub-tropical Australia for 12 months after sowing of chickpea (Cicer arietinum L.), canola (Brassica napus L.), faba bean (Vicia faba L.), and field pea (Pisum sativum L.). Cumulative N2O emissions from N-fertilised canola (624 g N2O-N ha−1) greatly exceeded those from chickpea (127 g N2O-N ha−1) in Experiment 1. Similarly, N2O emitted from canola (385 g N2O-N ha−1) in Experiment 2 was significantly greater than chickpea (166 g N2O-N ha−1), faba bean (166 g N2O-N ha−1) or field pea (135 g N2O-N ha−1). Highest losses from canola were recorded during the growing season, whereas 75% of the annual N2O losses from the legumes occurred post-harvest. Legume N2-fixation provided 37–43% (chickpea), 54% (field pea) and 64% (faba bean) of total plant biomass N. Using only fixed-N inputs, we calculated EFs for chickpea (0.13–0.31%), field pea (0.18%) and faba bean (0.04%) that were significantly less than N-fertilised canola (0.48–0.78%) (P < 0.05), suggesting legume-fixed N is a less emissive form of N input to the soil than fertiliser N. Inputs of legume-fixed N should be more accurately quantified to properly gauge the potential for legumes to mitigate soil N2O emissions. EF’s from legume crops need to be revised and should include a factor for the proportion of the legume’s N derived from the atmosphere.
Resumo:
In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia's national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha-1 year-1 to net removal of 0.12 t CO2-e ha-1 year-1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990-2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45-0.25 t CO2-e ha-1 year-1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990-2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha-1 year-1 to net removals of 0.07 t CO2-e ha-1 year-1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.
Resumo:
This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency.
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
The study monitored the emissions of volatile organic compounds (VOCs) from the exhaust of cars fuelled by liquefied petroleum gas (LPG) and unleaded petrol (ULP). Six cars, four fuelled by LPG and two by ULP, were tested on a chassis dynamometer at two different cruising modes of operation (60 km h−1 and 80 km h−1) and idle. A total of 33 VOCs were identified in the exhaust of both types of fuels by the use of GC/MS. Due to the complexity of the dataset, Multi Criteria Decision Making (MCDM) software PROMETHEE and GAIA was used to rank the least polluting mode and fuel. The 60 km h−1 driving speed was identified as the cleaner mode of driving as was LPG fuel. The Ozone Formation Potential (OFP) of the VOCs was also calculated by using the incremental reactivity scale. Priority VOCs leading to ozone formation were identified according to the three incremental reactivity scales: MIR, MOIR and EBIR. PROMETHEE was applied to assess the most preferred scale of reactivity for predicting ozone formation potential under different scenarios. The results enhance the understanding of the environmental value of using LPG to power passenger cars.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
This paper proposes a novel way of generating high voltage for electric discharge plasma in controlling NOx emission in diesel engine exhaust. A solar powered high frequency electric discharge topology has been suggested that will improve the size and specific energy density required when compared to the traditional repetitive pulse or 50 Hz AC energization. This methodology has been designed, fabricated and experimentally verified by conducting studies on real diesel engine exhaust.
Resumo:
he induced current and voltage on the skin of an airborne vehicle due to the coupling of external electromagnetic field could be altered in the presence of ionized exhaust plume. So in the present work, a theoretical analysis is done to estimate the electrical parameters such as electrical conductivity and permittivity and their distribution in the axial and radial directions of the exhaust plume of an airborne vehicle. The electrical conductivity depends on the distribution of the major ionic species produced from the propellant combustion. In addition it also depends on temperature and pressure distribution of the exhaust plume as well as the generated shock wave. The chemically reactive rocket exhaust flow is modeled in two stages. The first part is simulated from the combustion chamber to the throat of the supersonic nozzle by using NASA Chemical Equilibrium with Application (CEA) package and the second part is simulated from the nozzle throat to the downstream of the plume by using a commercial Computational Fluid Dynamics (CFD) solver. The contour plots of the exhaust parameters are presented. Eight barrel shocks which influence the distribution of the vehicle exhaust parameters are obtained in this simulation. The computed peak value of the electrical conductivity of the plume is 0.123 S/m and the relative permittivity varies from 0.89 to 0.99. The attenuation of the microwave when it is passing through the conducting exhaust plume has also been presented.
Resumo:
This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.
Resumo:
In Australia, factors such as local planning processes, urban encroachment into rural areas and intensification of the poultry industry have increased the potential for odour and dust nuisance. At present, accurate estimates of odour emissions from mechanically ventilated poultry housing systems do not exist for Australian conditions. This has made the poultry industry vulnerable to unsubstantiated criticism. Recently, the Australian poultry industry have made a significant investment in research to obtain accurate estimates of odour, dust and volatile chemical emission rates from typical poultry housing systems. This paper describes the measurement of odour emissions from tunnel ventilated poultry housing systems in different climatic zones in Queensland and Victoria, Australia (humid sub-tropical and Mediterranean respectively) during two seasons (summer and winter). Samples were collected at defined intervals over typical batch production cycles to define the odour emission profiles. These samples were analysed using dynamic olfactometry according to the Australian Standard 4323.3 to derive the odour concentration values. Ventilation rates were measured concurrently, allowing the calculation of odour emission rates. Odour concentration and emission rates were assessed in terms of ventilation rate, ambient and shed air temperature and relative humidity and litter moisture status. Odour emission rates varied with bird age. Seasonal differences in odour emission rate were also observed.
Resumo:
Replicable experimental studies using a novel experimental facility and a machine-based odour quantification technique were conducted to demonstrate the relationship between odour emission rates and pond loading rates. The odour quantification technique consisted of an electronic nose, AromaScan A32S, and an artificial neural network. Odour concentrations determined by olfactometry were used along with the AromaScan responses to train the artificial neural network. The trained network was able to predict the odour emission rates for the test data with a correlation coefficient of 0.98. Time averaged odour emission rates predicted by the machine-based odour quantification technique, were strongly correlated with volatile solids loading rate, demonstrating the increased magnitude of emissions from a heavily loaded effluent pond. However, it was not possible to obtain the same relationship between volatile solids loading rates and odour emission rates from the individual data. It is concluded that taking a limited number of odour samples over a short period is unlikely to provide a representative rate of odour emissions from an effluent pond. A continuous odour monitoring instrument will be required for that more demanding task.
Resumo:
Odour emission rates were measured for seven different anaerobic ponds treating piggery wastes at six to nine discrete locations across the surface of each pond on each sampling occasion over a thirteen month period. Significant variability in emission rates were observed for each pond. Measurement of a number of water quality variables in pond liquor samples collected at the same time and from the same locations as the odour samples indicated that the composition of the pond liquor was also variable. The results indicated that spatial variability was a real phenomenon and could have a significant impact on odour assessment practices. Considerably more odour samples would be required to characterise pond emissions than currently recommended by most practitioners, or regulatory agencies.