411 resultados para Actuation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric Elastomers (DE) are incompressible dielectrics which can experience deviatoric (isochoric) finite deformations in response to applied large electric fields. Thanks to the strong electro-mechanical coupling, DE intrinsically offer great potentialities for conceiving novel solid-state mechatronic devices, in particular linear actuators, which are more integrated, lightweight, economic, silent, resilient and disposable than equivalent devices based on traditional technologies. Such systems may have a huge impact in applications where the traditional technology does not allow coping with the limits of weight or encumbrance, and with problems involving interaction with humans or unknown environments. Fields such as medicine, domotic, entertainment, aerospace and transportation may profit. For actuation usage, DE are typically shaped in thin films coated with compliant electrodes on both sides and piled one on the other to form a multilayered DE. DE-based Linear Actuators (DELA) are entirely constituted by polymeric materials and their overall performance is highly influenced by several interacting factors; firstly by the electromechanical properties of the film, secondly by the mechanical properties and geometry of the polymeric frame designed to support the film, and finally by the driving circuits and activation strategies. In the last decade, much effort has been focused in the devolvement of analytical and numerical models that could explain and predict the hyperelastic behavior of different types of DE materials. Nevertheless, at present, the use of DELA is limited. The main reasons are 1) the lack of quantitative and qualitative models of the actuator as a whole system 2) the lack of a simple and reliable design methodology. In this thesis, a new point of view in the study of DELA is presented which takes into account the interaction between the DE film and the film supporting frame. Hyperelastic models of the DE film are reported which are capable of modeling the DE and the compliant electrodes. The supporting frames are analyzed and designed as compliant mechanisms using pseudo-rigid body models and subsequent finite element analysis. A new design methodology is reported which optimize the actuator performances allowing to specifically choose its inherent stiffness. As a particular case, the methodology focuses on the design of constant force actuators. This class of actuators are an example of how the force control could be highly simplified. Three new DE actuator concepts are proposed which highlight the goodness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

„Photovernetzbare flüssigkristalline Polymere unterschiedlicher Kettentopologien“, Patrick Beyer, Mainz 2007 Zusammenfassung In der vorliegenden Arbeit wurde die Synthese und Charakterisierung flüssigkristalliner Elastomere unterschiedlicher Polymertopologien vorgestellt. Dabei wurden Systeme synthetisiert, bei denen die mesogenen Einheiten entweder als Seitengruppen an ein Polymerrückgrat angebunden (Seitenkettenelastomere) oder direkt in die Polymerkette integriert (Hauptkettenelastomere) sind (siehe Abbildung). Bezüglich der Seitenkettensysteme konnten erstmals photovernetzbare smektische Seitenkettenpolymere, in denen aufgrund der Anknüpfung eines photoisomerisierbaren Azobenzols eine Photo- modulation der ferroelektrischen Eigenschaften möglich ist, dargestellt werden. Homöotrop orientierte freistehende Filme dieser Materialien konnten durch Spincoaten dargestellt und unter Ausnutzung des Dichroismus der Azobenzole durch geeignete Wahl der Bestrahlungsgeometrie photovernetzt werden. Aufbauend auf diesen Untersuchungen wurde anhand eines nicht vernetzbaren Modellsystems im Detail der Einfluss der trans-cis Isomerisierung des Azobenzols auf die ferroelektrischen Parameter untersucht. Durch zeitaufgelöste Messungen der Absorption der Azobenzole, der spontanen Polarisation und des Direktorneigungswinkels und Auswertung der kinetischen Prozesse konnte eine lineare Abhängigkeit der ferroelektrischen Eigenschaften vom Grad der Isomerisierungsreaktion festgestellt werden. Durch Vergleich dieser in der flüssigkristallinen Phase erhaltenen Ergebnisse mit der Kinetik der thermischen Reisomerisierung in Lösung (Toluol) konnte ferner eine deutliche Reduzierung der Relaxationszeiten in der anisotropen flüssigkristallinen Umgebung festgestellt und auf eine Absenkung der Aktivierungsenergie zurückgeführt werden. Makroskopische Formänderungen der Seitenkettenelastomere am Phasenübergang von der flüssigkristallinen in die isotrope Phase konnten jedoch nicht festgestellt werden. Aus diesem Grund wurden neue Synthesestrategien für die Darstellung von Hauptkettenelastomeren entwickelt, die sich aufgrund der direkten Kopplung von flüssigkristallinem Ordnungsgrad und Polymerkettenkonformation besser für die Herstellung thermischer Aktuatoren eignen. Auf Basis flüssigkristalliner Polymalonate konnten dabei lateral funktionalisierte smektische Hauptkettenpolymere synthetisiert werden, welche erstmals die Darstellung von LC-Hauptkettenelastomeren durch Photovernetzung in der flüssigkristallinen Phase erlauben. Durch laterale Bromierung konnte in diesen Systemen die Kristallisationstendenz der verwendeten Biphenyleinheiten unterdrückt werden. Bezüglich der Photovernetzung konnten zwei neue Synthesemethoden entwickelt werden, bei denen der Vernetzungsschritt entweder durch radikalische Polymerisation lateral angebundener Acrylatgruppen oder durch photoaktive Benzophenongruppen erfolgte. Basierend auf den Benzophenon funktionalisierten Systemen konnte ein neuartiges Verfahren zur Darstellung makroskopisch orientierter Hauptkettenelastomere durch Photovernetzung entwickelt werden. Die Elastomerproben, deren Ordnungsgrad durch Röntgenuntersuchungen ermittelt werden konnte, zeigen am Phasenübergang von der flüssigkristallinen in die isotrope Phase eine reversible Formänderung von 40%. Im Gegensatz zu anderen bekannten smektischen Systemen konnten die in dieser Arbeit vorgestellten Elastomere ohne Zerstörung der Phase bis zu 60% entlang der smektischen Schichtnormalen gestreckt werden, was im Kontext einer geringen Korrelation der smektischen Schichten in Hauptkettenelastomeren diskutiert wurde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis provides an experimental analysis of the effectiveness of oriented DBD plasma actuators over a NACA 0015 airfoil at low Reynolds numbers. Tests were performed in partnership with the Department of Electrical Engineering of Bologna University, in the wind tunnel of the Applied Aerodynamics Laboratory of Aerospace Engineering faculty. Lift coefficient measurements were carried out in order to verify how an oriented plasma jet succeeds in prevent boundary layer separation. Both actuators’ chord wise position and plasma jet orientation angle have been investigated to examine which configurations lead to the best results. A particular attention has been paid also to the analysis of results in steady and unsteady plasma actuation. Questa tesi offre un’analisi sperimentale sull’efficacia di attuatori al plasma orientabili, basati su una tecnologia DBD, installati su un profilo alare NACA 0015, a bassi numeri di Reynolds. Le prove sono state condotte in collaborazione con il Dipartimento di Ingegneria Elettrica dell’Università di Bologna, nella galleria del vento del Laboratorio di Aerodinamica Applicata della Facoltà di Ingegneria Aerospaziale di Forlì. Per verificare come un getto orientabile di plasma riesca a prevenire la separazione dello strato limite, sono state eseguite misure sul coefficiente di portanza. Sono state indagate sia la posizione degli attuatori lungo la corda che l’angolo con cui è orientato il getto di plasma, per vedere quali configurazioni conducono ai migliori risultati. Una particolare attenzione è stata riservata all’analisi dei risultati ottenuti con plasma continuo e pulsato.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A control-oriented model of a Dual Clutch Transmission was developed for real-time Hardware In the Loop (HIL) applications, to support model-based development of the DCT controller. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, that was then implemented in a HIL system and connected to the TCU (Transmission Control Unit). Several tests have been performed: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. The first intensive use of the HIL application led to the validation of the new safety strategies implemented inside the TCU software. A test automation procedure has been developed to permit the execution of a pattern of tests without the interaction of the user; fully repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays microfluidic is becoming an important technology in many chemical and biological processes and analysis applications. The potential to replace large-scale conventional laboratory instrumentation with miniaturized and self-contained systems, (called lab-on-a-chip (LOC) or point-of-care-testing (POCT)), offers a variety of advantages such as low reagent consumption, faster analysis speeds, and the capability of operating in a massively parallel scale in order to achieve high-throughput. Micro-electro-mechanical-systems (MEMS) technologies enable both the fabrication of miniaturized system and the possibility of developing compact and portable systems. The work described in this dissertation is towards the development of micromachined separation devices for both high-speed gas chromatography (HSGC) and gravitational field-flow fractionation (GrFFF) using MEMS technologies. Concerning the HSGC, a complete platform of three MEMS-based GC core components (injector, separation column and detector) is designed, fabricated and characterized. The microinjector consists of a set of pneumatically driven microvalves, based on a polymeric actuating membrane. Experimental results demonstrate that the microinjector is able to guarantee low dead volumes, fast actuation time, a wide operating temperature range and high chemical inertness. The microcolumn consists of an all-silicon microcolumn having a nearly circular cross-section channel. The extensive characterization has produced separation performances very close to the theoretical ideal expectations. A thermal conductivity detector (TCD) is chosen as most proper detector to be miniaturized since the volume reduction of the detector chamber results in increased mass and reduced dead volumes. The microTDC shows a good sensitivity and a very wide dynamic range. Finally a feasibility study for miniaturizing a channel suited for GrFFF is performed. The proposed GrFFF microchannel is at early stage of development, but represents a first step for the realization of a highly portable and potentially low-cost POCT device for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of guided ultrasonic waves (GUW) has increased considerably in the fields of non-destructive (NDE) testing and structural health monitoring (SHM) due to their ability to perform long range inspections, to probe hidden areas as well as to provide a complete monitoring of the entire waveguide. Guided waves can be fully exploited only once their dispersive properties are known for the given waveguide. In this context, well stated analytical and numerical methods are represented by the Matrix family methods and the Semi Analytical Finite Element (SAFE) methods. However, while the former are limited to simple geometries of finite or infinite extent, the latter can model arbitrary cross-section waveguides of finite domain only. This thesis is aimed at developing three different numerical methods for modelling wave propagation in complex translational invariant systems. First, a classical SAFE formulation for viscoelastic waveguides is extended to account for a three dimensional translational invariant static prestress state. The effect of prestress, residual stress and applied loads on the dispersion properties of the guided waves is shown. Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dispersion analysis of damped guided waves in waveguides and cavities of arbitrary cross-section is proposed. The attenuation dispersive spectrum due to material damping and geometrical spreading of cavities with arbitrary shape is shown for the first time. Finally, a coupled SAFE-2.5D BEM framework is developed to study the dispersion characteristics of waves in viscoelastic waveguides of arbitrary geometry embedded in infinite solid or liquid media. Dispersion of leaky and non-leaky guided waves in terms of speed and attenuation, as well as the radiated wavefields, can be computed. The results obtained in this thesis can be helpful for the design of both actuation and sensing systems in practical application, as well as to tune experimental setup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of dexterous robotic hands out of research laboratories has been limited by the intrinsic complexity that these devices present. This is directly reflected as an economically unreasonable cost and a low overall reliability. Within the research reported in this thesis it is shown how the problem of complexity in the design of robotic hands can be tackled, taking advantage of modern technologies (i.e. rapid prototyping), leading to innovative concepts for the design of the mechanical structure, the actuation and sensory systems. The solutions adopted drastically reduce the prototyping and production costs and increase the reliability, reducing the number of parts required and averaging their single reliability factors. In order to get guidelines for the design process, the problem of robotic grasp and manipulation by a dual arm/hand system has been reviewed. In this way, the requirements that should be fulfilled at hardware level to guarantee successful execution of the task has been highlighted. The contribution of this research from the manipulation planning side focuses on the redundancy resolution that arise in the execution of the task in a dexterous arm/hand system. In literature the problem of coordination of arm and hand during manipulation of an object has been widely analyzed in theory but often experimentally demonstrated in simplified robotic setup. Our aim is to cover the lack in the study of this topic and experimentally evaluate it in a complex system as a anthropomorphic arm hand system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cochlear implants have been of great benefit in restoring auditory function to individuals with profound bilateral sensorineural deafness. The implants are used to directly stimulate auditory nerves and send a signal to the brain that is then interpreted as sound. This project focuses on the development of a surgical positioning tool to accurately and effectively place an array of stimulating electrodes deep within the cochlea. This will lead to improved efficiency and performance of the stimulating electrodes, reduced surgical trauma to the cochlea, and as a result, improved overall performance to the implant recipient. The positioning tool reported here consists of multiple fluidic chambers providing localized curvature control along the length of the attached silicon electrode array. The chambers consist of 200μm inner diameter PET (polyethylene therephthalate) tubes with 4μm wall thickness. The chambers are molded in a tapered helical configuration to correspond to the cochlear shape upon relaxation of the actuators. This ensures that the optimal electrode placement within the cochlea is retained after the positioning tool becomes dormant (for chronic implants). Actuation is achieved by injecting fluid into the PET chambers and regulating the fluidic pressure. The chambers are arranged in a stacked, overlapping design to provide fluid connectivity with the non-implantable pressure controller and allow for local curvature control of the device. The stacked tube configuration allows for localized curvature control of various areas along the length of the electrode and additional stiffening and actuating power towards the base. Curvature is affected along the entire length of a chamber and the result is cumulative in sections of multiple chambers. The actuating chambers are bonded to the back of a silicon electrode array.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an innovative integration of sensing and nano-scaled fluidic actuation in the combination of pH sensitive optical dye immobilization with the electro-osmotic phenomena in polar solvents like water for flow-through pH measurements. These flow-through measurements are performed in a flow-through sensing device (FTSD) configuration that is designed and fabricated at MTU. A relatively novel and interesting material, through-wafer mesoporous silica substrates with pore diameters of 20 -200 nm and pore depths of 500 µm are fabricated and implemented for electro-osmotic pumping and flow-through fluorescence sensing for the first time. Performance characteristics of macroporous silicon (> 500 µm) implemented for electro-osmotic pumping include, a very large flow effciency of 19.8 µLmin-1V-1 cm-2 and maximum pressure effciency of 86.6 Pa/V in comparison to mesoporous silica membranes with 2.8 µLmin-1V-1cm-2 flow effciency and a 92 Pa/V pressure effciency. The electrical current (I) of the EOP system for 60 V applied voltage utilizing macroporous silicon membranes is 1.02 x 10-6A with a power consumption of 61.74 x 10-6 watts. Optical measurements on mesoporous silica are performed spectroscopically from 300 nm to 1000 nm using ellipsometry, which includes, angularly resolved transmission and angularly resolved reflection measurements that extend into the infrared regime. Refractive index (n) values for oxidized and un-oxidized mesoporous silicon sample at 1000 nm are found to be 1.36 and 1.66. Fluorescence results and characterization confirm the successful pH measurement from ratiometric techniques. The sensitivity measured for fluorescein in buffer solution is 0.51 a.u./pH compared to sensitivity of ~ 0.2 a.u./pH in the case of fluorescein in porous silica template. Porous silica membranes are efficient templates for immobilization of optical dyes and represent a promising method to increase sensitivity for small variations in chemical properties. The FTSD represents a device topology suitable for application to long term monitoring of lakes and reservoirs. Unique and important contributions from this work include fabrication of a through-wafer mesoporous silica membrane that has been thoroughly characterized optically using ellipsometry. Mesoporous silica membranes are tested as a porous media in an electro-osmotic pump for generating high pressure capacities due to the nanometer pore sizes of the porous media. Further, dye immobilized mesoporous silica membranes along with macroporous silicon substrates are implemented for continuous pH measurements using fluorescence changes in a flow-through sensing device configuration. This novel integration and demonstration is completely based on silicon and implemented for the first time and can lead to miniaturized flow-through sensing systems based on MEMS technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation discusses structural-electrostatic modeling techniques, genetic algorithm based optimization and control design for electrostatic micro devices. First, an alternative modeling technique, the interpolated force model, for electrostatic micro devices is discussed. The method provides improved computational efficiency relative to a benchmark model, as well as improved accuracy for irregular electrode configurations relative to a common approximate model, the parallel plate approximation model. For the configuration most similar to two parallel plates, expected to be the best case scenario for the approximate model, both the parallel plate approximation model and the interpolated force model maintained less than 2.2% error in static deflection compared to the benchmark model. For the configuration expected to be the worst case scenario for the parallel plate approximation model, the interpolated force model maintained less than 2.9% error in static deflection while the parallel plate approximation model is incapable of handling the configuration. Second, genetic algorithm based optimization is shown to improve the design of an electrostatic micro sensor. The design space is enlarged from published design spaces to include the configuration of both sensing and actuation electrodes, material distribution, actuation voltage and other geometric dimensions. For a small population, the design was improved by approximately a factor of 6 over 15 generations to a fitness value of 3.2 fF. For a larger population seeded with the best configurations of the previous optimization, the design was improved by another 7% in 5 generations to a fitness value of 3.0 fF. Third, a learning control algorithm is presented that reduces the closing time of a radiofrequency microelectromechanical systems switch by minimizing bounce while maintaining robustness to fabrication variability. Electrostatic actuation of the plate causes pull-in with high impact velocities, which are difficult to control due to parameter variations from part to part. A single degree-of-freedom model was utilized to design a learning control algorithm that shapes the actuation voltage based on the open/closed state of the switch. Experiments on 3 test switches show that after 5-10 iterations, the learning algorithm lands the switch with an impact velocity not exceeding 0.2 m/s, eliminating bounce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual phase such as the phase connectivity, phase size, shape and spatial arrangement. This dissertation mainly focuses on the computational study of microstructure – property – mechanism relations in two representative ferroic composites, i.e., two-phase particulate magnetoelectric (ME) composite and polymer matrix ferroelectric composite. The former is a great example of ferroic composite exhibiting a new property and functionality that neither of the constituent phases possesses individually. The latter well represents the kind of ferroic composites having property combinations that are better than the existing materials. Phase field modeling was employed as the computing tool, and the required models for ferroic composites were developed based on existing models for monolithic materials. Extensive computational simulations were performed to investigate the microstructure-property relations and the underlying mechanism in ferroic composites. In particulate, it is found that for ME composite 0-3 connectivity (isolated magnetostrictive phase) is necessary to exhibit ME effect, and small but finite electrical conductivity of isolated magnetic phase can beneficially enhance ME effect. It is revealed that longitudinal and transverse ME coefficients of isotropic 0-3 particulate composites can be effectively tailored by controlling magnetic domain structures without resort to anisotropic two-phase microstructures. Simulations also show that the macroscopic properties of the ferroelectricpolymer composites critically depend on the ferroelectric phase connectivity while are not sensitive to the sizes and internal grain structures of the ceramic particles. Texturing is found critical to exploit the paraelectric«ferroelectric phase transition and nonlinear polarization behavior in paraelectric polycrystal and its polymer matrix composite. Additionally, a Diffuse Interface Field model was developed to simulate packing and motion in liquid phase which is promising for studying the fabrication of particulatepolymer composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the design, fabrication, and testing of a microelectromechanical systems (MEMS) light modulator based on pixels patterned with periodic nanohole arrays. Flexure-suspended silicon pixels are patterned with a two dimensional array of 150 nm diameter nanoholes using nanoimprint lithography. A top glass plate assembled above the pixel array is used to provide a counter electrode for electrostatic actuation. The nanohole pattern is designed so that normally-incident light is coupled into an in-plane grating resonance, resulting in an optical stop-band at a desired wavelength. When the pixel is switched into contact with the top plate, the pixel becomes highly reflective. A 3:1 contrast ratio at the resonant wavelength is demonstrated for gratings patterned on bulk Si substrates. The switching time is 0.08 ms and the switching voltage is less than 15V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we describe our current work on bio-inspired locomotion systems using a deformable structure and smart materials, concretely Shape Memory Alloys, exploring the possibility of building motor-less and gear-less robots. A swimming underwater robot has been developed whose movements are generated using such actuators, used for bending the backbone of the fish, which in turn causes a change on the curvature of the body. This paper focuses on how standard swimming patterns can be reproduced with the proposed design, using an actuation dynamics model identified in prior work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier–Stokes equations. Finally, the critical parameters obtained from both approaches are compared.