582 resultados para ALTITUDINAL ZONATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authigenic carbonate mineral distributions are compared to pore-water geochemical profiles and used to evaluate diagenesis within sedimentary sections containing gas hydrates on the Blake Ridge (Ocean Drilling Program Sites 994, 995, and 997). Carbonate mineral distributions reveal three distinct diagenetic zones. (1) Carbonate minerals in the upper 20 m are primarily biogenic and show no evidence of diagenesis. The d13C and d18O values of calcite within this zone reflects marine carbonate (~0 per mil Peedee belemnite [PDB]) formed in equilibrium with seawater. (2) Between 20 and 100 mbsf, calcite d13C values are distinctly negative (as low as -7.0 per mil), and authigenic dolomite is common (~2-40 wt%) with d13C values between -3.6 per mil and 13.7 per mil. (3) Below 100 mbsf, dolomite abundance decreases to trace amounts, and disseminated siderite becomes the pervasive (~2-30 wt%) authigenic carbonate. Both siderite textures and stable isotope values indicate direct precipitation from pore fluids rather than dolomite replacement. The d13C and d18O values of siderite vary from 5.0 per mil to 10.9 per mil and 2.9 per mil to 7.6 per mil, respectively. Comparisons between the d13C profiles of dissolved inorganic carbon (DIC) and pore-water concentration gradients, with the d13C and d18O values of authigenic carbonates, delineate a distinct depth zonation for authigenic carbonate mineral formation. Coincidence of the most negative d13CDIC values (<=-38 per mil) and negative d13C values of both calcite and dolomite, with pore-water alkalinity increases, sulfate depletion, and decreases in interstitial Ca2+ and Mg2+ concentrations at and below 20 mbsf, suggests that authigenic calcite and dolomite formation is initiated at the base of the sulfate reduction zone (~21 mbsf) and occurs down to ~100 mbsf. Siderite formation apparently occurs between 120 and 450 mbsf; within, and above, the gas hydrate-bearing section of the sediment column (~200-450 mbsf). Siderite d13C and d18O values are nearly uniform from their shallowest occurrence to the bottom of the sedimentary section. However, present-day pore-water d13CDIC values are only similar to siderite d13C values between ~100 and 450 mbsf. Furthermore, calculated equilibrium d18O values of siderite match the measured 18O values of siderite between 120 and 450 mbsf. This interval is characterized by high alkalinity (40-120 mM) and low Ca2+ and Mg2+ concentrations, conditions that are consistent with siderite formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abundant Fe-Mn carbonate concretions (mainly siderite, manganosiderite, and rhodochrosite) were found in the hemipelagic claystones of Site 603 on the eastern North American continental rise. They occur as nodules, micronodules, or carbonate-replaced burrow fills and layers at a subbottom depth of between ~ 120 (Pliocene) and 1160 m (Albian-Cenomanian). In general, the Fe-Mn carbonate concretions form from CO3- produced by the microbiological degradation of organic matter in the presence of abundant Fe + or Mn + and very low S- concentrations. However, there is also some evidence for diagenetic replacement of preexisting calcite by siderite. The carbon isotope composition of diagenetic Fe-Mn carbonate nodules is determined by CO2 reduction during methanogenesis. Carbonate nodules in Cretaceous sediments at sub-bottom depths of 1085 and 1160 m have distinctly lower d13C values (- 12.2 and - 12.9 per mil) than Neogene siderites, associated with abundant biogenic methane in the pore space (-8.9 to 1.7 per mil between 330 and 780 m depth). Since no isotopic zonation could be detected within individual nodules, we assume that the isotopic composition reflects more or less geochemical conditions at the present burial depth of the carbonate nodules. Carbonates did not precipitate within the zone of sulfate reduction (approximately 0.01 to 10 m), where all of the pyrite was formed. The oxygen isotope composition indicates precipitation from seawater-derived interstitial waters. The d18O values decrease with increasing burial depth from + 5.1 to - 1.2 per mil, suggesting successively higher temperatures during carbonate formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report contains the occurrence data for dinoflagellate cysts recorded from 163 samples taken from Sites 902 through 906, during Ocean Drilling Program (ODP) Leg 150. The dinoflagellate cyst (dinocyst) stratigraphy has been presented in Mountain, Miller, Blum, et al. (1994, doi:10.2973/odp.proc.ir.150.1994), and was based on these data. This report provides the full dinocyst data set supporting the dinocyst stratigraphic interpretations made in Mountain, Miller, Blum, et al. (1994). For Miocene shipboard dinocyst stratigraphy, I delineated 10 informal zones: pre-A, and A through I, in ascending stratigraphic order. These zones are defined in Shipboard Scientific Party (1994a, doi:10.2973/odp.proc.ir.150.103.1994), and are based on my studies of Miocene dinocyst stratigraphy in the Maryland and Virginia coastal plain (de Verteuil and Norris, 1991, 1992; de Verteuil, 1995). This zonation has been slightly revised (de Verteuil and Norris, 1996), and the new formal zone definitions are repeated below. Each new zone has an alpha-numeric abbreviation starting with "DN" (for Dinoflagellate Neogene). The equivalence between the informal zones reported in Mountain, Miller, Blum, et al. (1994), and the new DN zones is illustrated in Figure 1. For clarity, I delineated both zonations in the range charts that accompany this report (Tables 1-6). De Verteuil and Norris (1996a), using these and other data, correlated the DN zonation with the geological time scale of Berggren et al. (1995). Figure 2 summarizes these correlations and can be used to check the chronostratigraphic position of samples in this report, as determined by dinocyst stratigraphy. A thorough discussion of the basis for, and levels of uncertainty associated with, these correlations to the Cenozoic time scale can be found in de Verteuil and Norris (1996a). The Appendix lists all the dinocyst taxa recorded during shipboard analyses of Leg 150 samples. Open nomenclature is used for undescribed taxa. The range charts and Appendix also include reference to several new taxa that de Verteuil and Norris (1996b) described from Miocene coastal plain strata in Maryland and Virginia. Names of these taxa in Tables 1 through 6 and in the Appendix of this report are not intended for effective publication as defined in the International Code of Botanical Nomenclature (ICBN, Greuter et al., 1994). Therefore, taxonomic nomenclature contained in this report is not to be treated as meeting the conditions of effective and valid publication (ICBN; Article 29).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated framework of magnetostratigraphy, calcareous microfossil bio-events, cyclostratigraphy and d13C stratigraphy is established for the upper Campanian-Maastrichtian of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate d13C events and nannofossil bio-events have been recorded and plotted against magnetostratigraphy, and provided absolute ages using the results of the cyclostratigraphic study and the recent astronomical calibration of the Maastrichtian. Thirteen carbon-isotope events and 40 nannofossil bio-events are recognized and calibrated with cyclostratigraphy, as well as 14 previously published foraminifer events, thus constituting a solid basis for large-scale correlations. Results show that this site is characterized by a nearly continuous sedimentation from the upper Campanian to the K-Pg boundary, except for a 500 kyr gap in magnetochron C31n. Correlation of the age-calibrated d13C profile of ODP Hole 762C to the d13C profile of the Tercis les Bains section, Global Stratotype Section and Point of the Campanian-Maastrichtian boundary (CMB), allowed a precise recognition and dating of this stage boundary at 72.15 ± 0.05 Ma. This accounts for a total duration of 6.15 ± 0.05 Ma for the Maastrichtian stage. Correlation of the boundary level with northwest Germany shows that the CMB as defined at the GSSP is ~800 kyr younger than the CMB as defined by Belemnite zonation in the Boreal realm. ODP Hole 762C is the first section to bear at the same time an excellent recovery of sediments throughout the upper Campanian-Maastrichtian, a precise and well-defined magnetostratigraphy, a high-resolution record of carbon isotope events and calcareous plankton biostratigraphy, and a cyclostratigraphic study tied to the La2010a astronomical solution. This section is thus proposed as an excellent reference for the upper Campanian-Maastrichtian in the Indian Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three Antarctic Ocean K/T boundary sequences from ODP Site 738C on the Kerguelen Plateau, ODP Site, 752B on Broken Ridge and ODP Site 690C on Maud Rise, Weddell Sea, have been analyzed for stratigraphic completeness and faunal turnover based on quantitative planktic foraminiferal studies. Results show that Site 738C, which has a laminated clay layer spanning the K/T boundary, is biostratigraphically complete with the earliest Tertiary Zones P0 and P1a present, but with short intrazonal hiatuses. Site 752B may be biostratigraphically complete and Site 690C has a hiatus at the K/T boundary with Zones P0 and P1a missing. Latest Cretaceous to earliest Tertiary planktic foraminiferal faunas from the Antarctic Ocean are cosmopolitan and similar to coeval faunas dominating in low, middle and northern high latitudes, although a few endemic species are present. This allows application of the current low and middle latitude zonation to Antarctic K/T boundary sequences. The most abundant endemic species is Chiloguembelina waiparaensis, which was believed to have evolved in the early Tertiary, but which apparently evolved as early as Chron 30N at Site 738C. Since this species is only rare in sediments of Site 690C in the Weddell Sea, this suggests that a watermass oceanographic barner may have existed between the Indian and Atlantic Antarctic Oceans. The cosmopolitan nature of the dominant fauna began during the last 200,000 to 300,000 years of the Cretaceous and continued at least 300,000 years into the Tertiary. This indicates a long-term environmental crisis that led to gradual elimination of specialized forms and takeover by generalists tolerant of wide ranging temperature, oxygen, salinity and nutrient conditions. A few thousand years before the K/T boundary these generalists gradually declined in abundance and species became generally dwarfed due to increased environmental stress. There is no evidence of a sudden mass killing of the Cretaceous fauna associated with a bolide impact at the K/T boundary. Instead, the already declining Cretaceous taxa gradually disappear in the early Danian and the opportunistic survivor taxa (Ch. waiparaensis and Guembelitria cretacea) increase in relative abundance coincident with the evolution of the first new Tertiary species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcaniclastic sediments of North Aoba Basin (Vanuatu) recovered during Ocean Drilling Program (ODP) Leg 134 show a mineralogical and chemical overprint of low grade hydrothermal alteration superimposed on the primary magmatic source compositions. The purpose of this study was to identify authigenic mineral phases incorporated in the volcaniclastic sediments, to distinguish authigenic chemical and mineralogical signals from the original volcaniclastic mineralogical and chemical compositions, and to determine the mechanism of authigenic minerals formation. Mineralogical, micro-chemical and bulk chemical analyses were utilized to identify and characterize authigenic phases and determine the original unaltered ash compositions. 117 volcaniclastic sediment samples from North Aoba Basin Sites 832 and 833 were analyzed. Primary volcaniclastic materials accumulated in North Aoba Basin can be divided into three types. The older basin-filling sequences show three different magmatic trends: high K, calc-alkaline, and low K series. The most recent accumulations are rhyodacitic composition and can be attributed to Santa Maria or Aoba volcanic emissions. Original depositional porosity of volcaniclastic sediments is an important factor in influencing distribution of authigenic phases. Finer-grained units are less altered and retain a bulk mineralogical and chemical composition close to the original pyroclastic rock composition. Coarser grained units (microbreccia and sandstones) are the major hosts of authigenic minerals. At both sites, authigenic minerals (including zeolites, clay minerals, Mg-carbonates, and quartz) exhibit complex zonation with depth that crosses original ash depositional boundaries and stratigraphic limits. The zeolite minerals phillipsite and analcime are ubiquitous throughout the altered intervals. At Site 832, the first zeolite minerals (phillipsite) occur in Pleistocene deposits as shallow as 146 meters below seafloor (mbsf). At Site 833 the first zeolite minerals (analcime) occur in Pleistocene deposits as shallow as 224 mbsf. The assemblage phillipsite + analcime + chabazite appears at 635 mbsf (Site 832) and at 376 mbsf (Site 833). Phillipsite + analcime + chabazite + thomsonite + heulandite are observed between 443 and 732 mbsf at Site 833. Thomsonite is no longer observed below 732 mbsf at Site 833. Heulandite is present to the base of the sections cored. The zeolite assemblages are associated with authigenic clay minerals (nontronite and saponite), calcite, and quartz. Chlorite is noticeable at Site 832 as deep as 851 mbsf. Zeolite zones are present but are less well defined at Site 832. Dolomite and rare magnesite are present below 940 m at Site 832. The coarse-grained authigenic mineral host intervals exhibit geochemical signatures that can be attributed to low grade hydrothermal alteration. The altered intervals show evidence of K2O, CaO, and rare earth elements mobilization. When compared to fine-grained, unaltered units, and to Santa Maria Island volcanics rocks, the altered zones are relatively depleted in rare earth elements, with light rare earth elements-heavy rare earth elements fractionation. Drilling at Site 833 penetrated a sill complex below 840 m. No sill was encountered at Site 832. Complex zonation of zeolite facies, authigenic smectites, carbonates and quartz, and associated geochemical signatures are present at both sites. The mineralogical and chemical alteration overprint is most pronounced in the deeper sections at Site 832. Based on mineralogical and chemical evidence at two locations less than 50 km apart, there is vertical and lateral variation in alteration of the volcaniclastic sediments of North Aoba Basin. The alteration observed may be activated by sill intrusion and associated expulsion of heated fluids into intervals of greater porosity. Such spatial variation in alteration could be attributed to the evolution of the basin axis associated with subduction processes along the New Hebrides Trench.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs represent major accumulations of calcium carbonate (CaCO3). The particularly labyrinthine network of reefs in Torres Strait, north of the Great Barrier Reef (GBR), has been examined in order to estimate their gross CaCO3 productivity. The approach involved a two-step procedure, first characterising and classifying the morphology of reefs based on a classification scheme widely employed on the GBR and then estimating gross CaCO3 productivity rates across the region using a regional census-based approach. This was undertaken by independently verifying published rates of coral reef community gross production for use in Torres Strait, based on site-specific ecological and morphological data. A total of 606 reef platforms were mapped and classified using classification trees. Despite the complexity of the maze of reefs in Torres Strait, there are broad morphological similarities with reefs in the GBR. The spatial distribution and dimensions of reef types across both regions are underpinned by similar geological processes, sea-level history in the Holocene and exposure to the same wind/wave energetic regime, resulting in comparable geomorphic zonation. However, the presence of strong tidal currents flowing through Torres Strait and the relatively shallow and narrow dimensions of the shelf exert a control on local morphology and spatial distribution of the reef platforms. A total amount of 8.7 million tonnes of CaCO3 per year, at an average rate of 3.7 kg CaCO3 m-2 yr-1 (G), were estimated for the studied area. Extrapolated production rates based on detailed and regional census-based approaches for geomorphic zones across Torres Strait were comparable to those reported elsewhere, particularly values for the GBR based on alkalinity-reduction methods. However, differences in mapping methodologies and the impact of reduced calcification due to global trends in coral reef ecological decline and changing oceanic physical conditions warrant further research. The novel method proposed in this study to characterise the geomorphology of reef types based on classification trees provides an objective and repeatable data-driven approach that combined with regional census-based approaches has the potential to be adapted and transferred to different coral reef regions, depicting a more accurate picture of interactions between reef ecology and geomorphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores from Sites 689 and 690 of Ocean Drilling Program Leg 113 provide the most continuous Paleocene and Eocene sequence yet recovered by deep sea drilling in the high latitudes of the Southern Ocean. The nannofossil-foraminifer oozes and chalks recovered from Maud Rise at 65°S in the Weddell Sea provide a unique opportunity for biostratigraphic study of extremely high southern latitude carbonate sediments. The presence of warm water index fossils such as the discoasters and species of the Tribrachiatus plexus facilitate the application of commonly used low latitude calcareous nannofossil biostratigraphic zonation schemes for the upper Paleocene and lower Eocene intervals. In the more complete section at Site 690, Okada and Bukry Zones CP1 through CP10 can be identified for the most part with the possible exception of Zone CP3. Several hiatuses are present in the sequence at Site 689 with the most notable being at the Cretaceous/Tertiary and Paleocene/Eocene boundaries. Though not extremely diverse, the assemblage of discoasters in the upper Paleocene and lower Eocene calcareous oozes is indicative of warm, relatively equable climates during that interval. A peak in discoaster diversity in uppermost Paleocene sediments (Zone CP8) corresponds to a negative shift in 5180 values. Associated coccolith assemblages are quite characteristic of high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Climatic cooling is indicated for middle Eocene sediments by assemblages that contain very abundant Reticulofenestra, lack common discoasters and sphenoliths and are much less diverse overall. Two new taxa are described, Biscutum? neocoronum n. sp. and Amithalithina sigmundii n. gen., n. sp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Cenozoic history of eolian sedimentation in the eastern Indian Ocean was developed from samples recovered during drilling of Sites 752, 754, and 756. Temporal changes in the mass accumulation rate of eolian material reflect major climatic shifts in the southern African source region. A significant drop in dust mass flux values occurs near the end of the lower Oligocene. Younger sediments are characterized by a gradual reduction in dust accumulation rates until the middle Miocene after which values remain consistently low throughout the late Cenozoic, although a slight increase in eolian accumulation rate occurs near 2.5 Ma. This pattern of dust mass flux appears related to the supply of dust-sized particles in the source region and represents a shift in the climatic regime of southern Africa to increasingly more arid conditions throughout the late Cenozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biostratigraphic distribution and abundance of lower Oligocene to Pleistocene diatoms is documented from Holes 747A, 747B, 748B, 749B, and 751A drilled during Ocean Drilling Program Leg 120 on the Kerguelen Plateau in the southeast Indian Ocean. The occurrence of middle and upper Eocene diatoms is also documented, but these are rare and occur in discrete intervals. The recovery of several Oligocene to Pleistocene sections with minimal coring gaps, relatively good magnetostratigraphic signatures, and mixed assemblages of both calcareous and siliceous microfossils makes the above four Leg 120 sites important biostratigraphic reference sections for the Southern Ocean and Antarctic continent. A high-resolution diatom zonation divides the last 36 m.y. into 45 zones and subzones. This zonation is built upon an existing biostratigraphic framework developed over the past 20 yr of Southern Ocean/Antarctic deep-sea coring and drilling. After the recent advances from diatom biostratigraphic studies on sediments from Legs 113, 114, 119, and 120, a zonal framework for the Southern Ocean is beginning to stabilize. The potential age resolution afforded by the high-diversity diatom assemblages in this region ranks among the highest of all fossil groups. In addition to the 46 datum levels that define the diatom zones and subzones, the approximate stratigraphic level, age, and magnetic anomaly correlative of more than 150 other diatom datums are determined or estimated. These total 73 datum levels for the Pliocene-Pleistocene, 67 for the Miocene, and 45 for the Oligocene. Greater stratigraphic resolution is possible as the less common and poorly documented species become better known. This high-resolution diatom stratigraphy, combined with good to moderately good magnetostratigraphic control, led to the recognition of more than 10 intervals where hiatuses dissect the Oligocene-Pleistocene section on the Kerguelen Plateau. We propose 12 new diatom taxa and 6 new combination

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleocene and Eocene nannofossil flora from Deep Sea Drilling Project Legs 25 and 40 were analyzed in order to provide a basis of comparison with DSDP Legs 36 and 71 and with other South Atlantic assemblages. A mid-latitude biostratigraphic zonation, using previously described zonal markers, was adopted for the southwest Indian Ocean. Various diagenetic effects were noted in the sedimentary sequences. Some of these mask to some extent paleoecologic signals, particularly those generated by the Discoaster/Chiasmolithus ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantified organic-walled dinoflagellate cyst (dinocyst) assemblages are presented for two sedimentary successions deposited in neritic environments of the Tethys Ocean during the Barremian and Aptian in an attempt to reconcile established dinocyst biostratigraphic schemes for Tethyan and Austral regions. One section is at Angles, southeast France (the Barremian stratotype section); the other is at Deep Sea Drilling Project Site 263, off northwest Australia. We also construct a carbon isotope record for Site 263 using bulk organic carbon. Both sections contain abundant, well-preserved dinocyst assemblages. These are diverse, with 89 taxa identified at Angles and 103 taxa identified at Site 263. Of these, more than 93% are cosmopolitan. When combined with other work at Angles and Site 263, we found that nine dinocysts have their first occurrence (FO) or last occurrence (LO) at both locations. These dinocyst events are, in alphabetical order: LO of Cassiculosphaeridia magna, FO of Criboperidinium? tenuiceras, LO of Kleithriasphaeridium fasciatum, LO of Muderongia staurota, FO of Odontochitina operculata, LO of Phoberocysta neocomica, FO of Prolixosphaeridium parvispinum, FO of Pseudoceratium retusum var. securigerum, and FO of Tehamadinium sousense. Although these events support a Barremian-Aptian age for both sections, their stratigraphic order is not the same in the sections. The d13Corg record at Site 263 displays a characteristic series of changes that have also been recorded in other carbon isotope curves spanning the Late Barremian-Early Aptian. Such independent dating (along with ammonite zones at Angles) suggests that three of the nine dinocyst events are approximately isochronous at Angles and Site 263: the LO of K. fasciatum in the mid Barremian, the FO of P. retusum var. securigerum and the FO of C.? tenuiceras in the earliest Aptian; the other six dinocyst events are diachronous. Dinocyst assemblages at Site 263 can be loosely placed within existing Australian zonation schemes, providing much-needed calibration. Our data suggest that the Muderongia testudinaria Zone ends in sediments of mid Barremian age, the succeeding Muderongia australis Zone extends into the Early Aptian, and the younger Odontochitina operculata Zone begins in Early Aptian deposits. The boundary between the M. australis and O. operculata zones, and the Ovoidinium cinctum (as Ascodinium) Subzone, positioned at the top of the M. australis Zone when present, could not be recognized incontrovertibly. Interestingly, however, this horizon broadly correlates with the onset and extent of the Selli Event, a time of major biogeochemical change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk X-ray mineralogy of 47 hemipelagic mud and clay samples from the Blake Outer Ridge has revealed that the sediments contain low magnesian calcite, calcian dolomite, ferroan dolomite, and magnesian siderite. Dolomite and siderite are authigenic and occur as rhombohedrons scattered through the sediments, whereas calcite is mostly biogenic. Pliocene dolomitic lenses are made up of interlocking polyhedral grains of ferroan dolomite. The contents of authigenic dolomite and siderite are 3 to 8% in carbonate sediments and 70 to 89% in dolomitic lenses. Dolomite occurs largely in the cores above 192 m sub-bottom depth, whereas siderite occurs in the cores below 87 m. The distribution and occurrence of dolomite and siderite have determined the diagenetic zonation of carbonates as Zone I (dolomitic zone, top-90 m), Zone II (transition zone, 90-180 m), and Zone III (sideritic zone, 180 m-bottom). Measurements of major and minor elements in the untreated total sediment samples and the insoluble residues after digestion in acid-reducing solution have revealed that the soluble fraction concentrates carbonates and ferromanganese associations (Ca, Mg, Sr, Fe, and Mn). Typical "hydrogenous elements" (Co, Cu, Ni, and V) are more concentrated in the insoluble residues rather than in the soluble fraction; the concentrations of these four elements are low and comparable to modern offshore mud, probably because the Site 533 sediments were deposited at a high rate of sedimentation. The contents of Fe2O3 and MnO are somewhat high for rapidly accumulated mud, particularly in the Pliocene sediments (8.09 and 0.26%, respectively, on a Carbonate-free basis). The high Fe and Mn contents are mainly due to the high contribution of the leacheable nonlithogenous fraction; leacheable Fe and Mn originate in the ferromanganese oxide accumulated on the seafloor. Only a small amount of ferric oxide was converted to iron sulfide in the surficial part of Zone I. Most ferromanganese oxide was reduced and precipitated as ferroan dolomite and magnesian siderite in Zones II and III under high alkalinity and high pH conditions in the organic-matter-rich sediments. Fe2+ and Mn2+ in the deeper sediments beneath Zone III possibly migrated upward and concentrated as siderite in Zone III, hence resulting in high contents of Fe and Mn in the Pliocene sediments. Analysis of carbonate zonation on the Blake Outer Ridge has revealed that the zonation is subparallel to the bedding plane rather than to the present seafloor. The sediments at Site 103 on the flank region of the Ridge are lacking Zone I and most of Zone II, probably the result of erosion of the most of the Pleistocene and Pliocene sediments by the enhanced bottom currents during the Pleistocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcareous plankton biostratigraphy (foraminifers and nannoplankton) and magnetostratigraphy of the upper Oligocene to Pleistocene have been studied in hydraulic piston Cores 516-1 to 516-44, 516A-5 to 516A-11, and 516F-1 to 516F-11, Rio Grande Rise (water depth 1313 m). Some 80 biostratigraphic datum events have been correlated to the magnetic polarity stratigraphy over an interval representing the Matuyama to Chron 5, and Chrons 16 to 23. Coring disturbance and biostratigraphic evidence of a condensed section preclude unambiguous identification of polarity or biostratigraphic events over an approximately 30-m interval in the middle and upper Miocene. Sedimentation rates varied considerably during the Neogene, but an abnormally thick upper Oligocene and lower Miocene section allows a high degree of magnetobiochronologic resolution. A new planktonic foraminiferal zonation for the Miocene completes the midlatitude Neogene zonation of the South Atlantic. Important magnetobiostratigraphic correlations at Site 516 and their estimated magnetochronology include: (1) Oligocene/ Miocene boundary = first appearance datum (FAD) Globorotalia kugleri = last appearance datum (LAD) Reticulofenestra bisecta = mid-Anomaly 6C (Chron 23) = 23.7 Ma; (2) Aquitanian/Burdigalian boundary = LAD G. kugleri = between base Anomaly 6A and top of unnumbered anomaly between 6A and 6B (Chron 21) = 21.8 Ma; (3) Zone N6/N7 boundary = LAD Catapsydrax dissimilis (= FAD G. pseudomiozea and G. zealandica) = Chron 16/17 boundary = 17.6 Ma; (4) early/middle Miocene (= Burdigalian/Langhian) boundary = FAD Praeorbulina sicana = midpart of Anomaly 5C (Chron 16) = 16.6 Ma or FAD P. glomerosa = just above Anomaly 5C (inferred) = 16.3 Ma; (5) Zone N8/N9 boundary = FAD Orbulina suturalis above Anomaly 5C (later part Chron 16, inferred); (6) Miocene/ Pliocene boundary = LAD Globoquadrina dehiscens LAD Globorotalia lenguaensis = basal Gilbert Chron = 5.3 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stratigraphic ranges and relative abundances of selected diatoms and silicoflagellates are presented from three Neogene sedimentary sequences from the subantarctic South Atlantic. These data were compiled from Hole 699A in the southwest South Atlantic and Holes 704A and 704B in the southeast South Atlantic. Thirty-five samples were examined from a 67.5-m section of Hole 699A, which is mostly late Miocene or younger in age. A total of 225 samples was examined from the upper 569.1-m lower Miocene to Quaternary section in Holes 704A and 704B. Although the partial census of the Site 704 sequences is only preliminary, it reveals that the Neogene is remarkably complete and serves as a reference for further detailed examination of an important biostratigraphic-magnetostratigraphic reference section for the Neogene record of the Southern Ocean.