362 resultados para 40Ar


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isotopic age determinations (40Ar/39Ar) and associated magnetic polarity stratigraphy for Casamayoran age fauna at Gran Barranca (Chubut, Argentina) indicate that the Barrancan “subage” of the Casamayoran South American Land Mammal “Age” is late Eocene, 18 to 20 million years younger than hitherto supposed. Correlations of the radioisotopically dated magnetic polarity stratigraphy at Gran Barranca with the Cenozoic geomagnetic polarity time scale indicate that Barrancan faunal levels at the Gran Barranca date to within the magnetochronologic interval from 35.34 to 36.62 megannums (Ma) or 35.69 to 37.60 Ma. This age revision constrains the timing of an adaptive shift in mammalian herbivores toward hypsodonty. Specifically, the appearance of large numbers of hypsodont taxa in South America occurred sometime between 36 and 32 Ma (late Eocene–early Oligocene), at approximately the same time that other biotic and geologic evidence has suggested the Southern high latitudes experienced climatic cooling associated with Antarctic glaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major elements, S, F, Cl concentrations and relative proportions of S6+ to total S were analyzed with electron microprobe in sideromelane glass shards from Pleistocene volcaniclastic sediments drilled during ODP Leg 157. Glasses are moderately to strongly evolved and represent a spectrum from alkali basalt, basanite and nephelinite through hawaiite, mugearite and tephrite to phonolitic tephrite. Measured S6+/SumS (0.03±0.98) and calculated Fe2+/Fe3+ (2.5±5.8) ratios in the melt yield preeruptive redox conditions ranging from NNO-1.4 to NNO+2.1. The morphology of the glass shards, variations of S and Cl concentrations (0.010±0.127 wt% S, 0.018±0.129 wt% Cl), calculated preeruptive temperatures (1030±1200 °C) and oxygen fugacities suggest that glasses deposited even within the same ash layers have diverse origin and may have resulted from both submarine and subaerial eruptions. Most vesicle-free glasses are characterized by high concentrations of S and represent undegassed or slightly degassed submarine lavas, whereas vesiculated glasses with low concentrations of S and Cl are strongly degassed and can be ascribed to the eruptions in shallow water or on land. Sideromelane glass shards at Sites 953 are thought to have resulted from submarine eruptions northeast of Gran Canaria, glasses at Site 954 represent mostly volcaniclastic material of shallow water submarine and subaerial eruptions on Gran Canaria and Tenerife, and glasses deposited at Site 956 resulted from submarine or explosive eruptions on Tenerife.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The McMurdo Dry Valleys, Antarctica (MDV) are among the oldest landscapes on Earth, and some landforms there present an intriguing apparent contradiction such that millions of years old surface deposits maintain their meter-scale morphology despite the fact that measured erosion rates are 0.1-4 m/Ma. We analyzed the concentration of cosmic ray-produced 10Be and 26Al in quartz sands from regolith directly above and below two well-documented ash deposits in the MDV, the Arena Valley ash (40Ar/39Ar age of 4.33 Ma) and the Hart ash (K-Ar age of 3.9 Ma). Measured concentrations of 10Be and 26Al are significantly less than expected given the age of the in situ air fall ashes and are best interpreted as reflecting the degradation rate of the overlying sediments. The erosion rate of the material above the Arena Valley ash that best explains the observed isotope profiles is 3.5 ± 0.41 x 10**-5 g/cm**2/yr (~0.19 m/Ma) for the past ~4 Ma. For the Hart ash, the erosion rate is 4.8 ± 0.21 x 10**-4 g/cm**2/yr (~2.6 m/Ma) for the past ~1 Ma. The concentration profiles do not show signs of mixing, creep, or deflation caused by sublimation of ground ice. These results indicate that the slow, steady lowering of the surface without vertical mixing may allow landforms to maintain their meter-scale morphology even though they are actively eroding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ash layers from Deep Sea Drilling Project site 178 in the northeast Pacific Ocean have been dated by the 40Ar-39Ar stepwise heating technique to resolve published discrepancies concerning the length of time explosive volcanism has affected the eastern Aleutian arc and Alaskan Peninsula. The results of the investigation indicate that the record of ash-fall deposition at site 178 extends back at least 6.5 m.y. Assuming that 6.5 m.y. ago marks the onset of renewed calc-alkalic volcanism of the volcanic arc, proposed models of continuous and discontinuous motion between the Pacific and North American lithospheric plates can be evaluated. If appreciable time elapsed between the onset of subduction and the onset of arc volcanism, the 6.5-m.y. record of ash-fall deposition in the north-east Pacific is most compatible with models of continuous plate motion throughout late Cenozoic time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty-seven white mica clasts were separated from five samples taken from near the bases of turbidites ranging in age from early Albian to middle Eocene. Twenty two (39%) of the micas have ages between 260 and 340 Ma and five (9%) have older ages (~400-600 Ma). The former age range is characteristic of the North American Alleghenian orogeny and the Iberian Variscan orogeny. The latter range is characteristic of the North American Acadian orogeny and older basement rocks in the Grand Banks and Newfoundland areas. Both age ranges are present in the middle Eocene sample, but only the younger range occurs in the middle Albian sample. This difference could be a sampling artifact. If this is not the case, then the most likely explanation is that the Acadian-aged micas within the Meguma Zone underlying the Grand Banks were totally reset by Alleghenian reactivation of the zone, a feature which occurs extensively in Nova Scotia. The addition of Acadian-aged micas in the middle Eocene sample may reflect a change in sediment provenance as drainage systems unrelated to rift topography developed. With the exception of one clast dated at 186 Ma, the 12 other micas obtained from the upper Paleocene sample yielded ages between 55 and 74 Ma, with 7 falling within ±2 m.y. of the 57-Ma age of the sample indicated by the biostratigraphic age-depth plot for Site 1276. This, together with the volcaniclastic content of the sample, indicates an input from near-contemporaneous volcanism. The nearest known occurrences of near-contemporaneous late Paleocene volcanism that could have produced white micas are in Greenland and Portugal, some 2000 and 1500 km distant, respectively, from Site 1276 during the Paleocene. However, ages of volcanism in these areas indicate that they could probably not be sources of micas younger than 60 m.y., which suggests some as-yet unknown volcanic source in the North Atlantic area. Accumulation in the Grand Banks area of airborne-transported volcaniclastic material from eruptions of slightly different ages, followed by a single resedimentation event, could account for the spread of dates obtained from the sample. White micas from the lowermost Albian sample show a spread of ages between 37 and 284 Ma that is completely different from the age distribution pattern of the middle Albian and middle Eocene samples. The sample location is between, and at least 25 m above and below, two igneous sills dated at 98 and 105 Ma. The sills have narrow thermal aureoles and ages older than the youngest detrital micas in the sample. It is unlikely, therefore, that the spread of mica ages in the sample is due to partial resetting of ages caused by thermal effects associated with the intrusion of the sills. The resetting may have been associated with a longer lived thermal event.