972 resultados para 111 Matematiikka
Resumo:
The present report describes the synthesis and biological evaluation of a molecular imaging platform based on gold nanoparticles directly labeled with indium-111. The direct labeling approach facilitated radiolabeling with high activities while maintaining excellent stability within the biological environment. The resulting imaging platform exhibited low interference of the radiolabel with targeting molecules, which is highly desirable for in-vivo probe tracking and molecular targeted tumor imaging. The indium-111 labeled gold nanoparticles were synthesized using a simple procedure that allowed stable labeling of the nanoparticle core with various indium-111 activities. Subsequent surface modification of the particle cores with RGD-based ligands at various densities allowed for molecular targeting of the αvß3 integrin in-vitro and for molecular targeted imaging in human melanoma and glioblastoma models in-vivo. The results demonstrate the vast potential of direct labeling with radioisotopes for tracking gold nanoparticles within biological systems.
Resumo:
We used electrochemical scanning tunneling microscopy to study the intercalation of hydrogen into a Cu(111) model electrode under reactive (in operando) conditions. Hydrogen evolution causes hydrogen intermediates to migrate into the copper lattice as function of the applied potential and the resulting current density. This H-inclusion is demonstrated to be reversible. The presence of subsurface hydrogen leads to a significant surface relaxation/reconstruction affecting both the geometric and electronic structure of the electrode surface.
Resumo:
Perchlorate adsorption on Au(1 1 1) was investigated by cyclic voltammetry and surface-enhanced infrared absorption spectroscopy. We found that the electrosorption valency of ClO4− on Au(1 1 1) is ∼ 0.6 and the total coverage of ClO4− on Au(1 1 1) is higher (∼ 0.15) than previously estimated (∼ 0.04). Based on the experimental adsorption isotherms obtained from infrared spectra and the reconstruction-free cyclic voltammograms, we proposed a mechanism for the ClO4− adsorption on Au(1 1 1).
Resumo:
On Au(111) electrodes, the investigation of ClO4− adsorption is hampered by a simultaneous surface reconstruction. We demonstrate that these two processes can be decoupled in cyclic voltammograms by a proper choice of the scan rate and of the initial potential. Our approach allowed the establishment of a relation between potentials of zero charge for the reconstructed and unreconstructed Au(111) surfaces.
Resumo:
Multiple somatostatin receptor (sst)-subtype expression has been manifested in several human tumors. Hence, the availability of radiopeptides retaining the full pansomatostatin profile of the native hormone (SS14) is expected to increase the sensitivity and broaden the clinical indications of currently applied sst2-preferring cyclic octapeptide radioligands, like OctreoScan(®) ([(111)In-DTPA]octreotide). On the other hand, SS14 has been excluded from clinical use due to its rapid in vivo degradation. We herein present a small library of seven novel cyclic SS14-mimics carrying at their N-terminus the universal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for stable binding of medically useful radiometals, like (111)In. By decreasing the number of amino acids composing the ring in their structure from 12 up to 6 AA, we induced important changes in key-biological parameters in vitro and in vivo. In particular, we observed unexpected changes and even total loss of sst1-5-affinity (6AA-ring), as well as weaker sst2-internalization efficacy as the ring size decreased. In contrast, in vivo stability increased with decreasing ring size, reaching its maximum in the 6AA-ring analogs. Interestingly, only the 12AA- and 9AA-ring members of this series showed sst2-specific uptake in AR4-2J tumors in mice revealing the prominent role of ring size on the biological response of tested SS14-derived radioligands.
Resumo:
The metabolic instability and high kidney retention of minigastrin (MG) analogues hamper their suitability for use in peptide-receptor radionuclide therapy of CCK2/gastrin receptor-expressing tumors. High kidney retention has been related to N-terminal glutamic acids and can be substantially reduced by coinjection of polyglutamic acids or gelofusine. The aim of the present study was to investigate the influence of the stereochemistry of the N-terminal amino acid spacer on the enzymatic stability and pharmacokinetics of (111)In-DOTA-(d-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-D) and (111)In-DOTA-(l-Glu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ((111)In-PP11-L). Using circular dichroism measurements, we demonstrate the important role of secondary structure on the pharmacokinetics of the two MG analogues. The higher in vitro serum stability together with the improved tumor-to-kidney ratio of the (d-Glu)6 congener indicates that this MG analogue might be a good candidate for further clinical study.