954 resultados para 0305 Organic Chemistry
Resumo:
Four new 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligands, which contain either additional alkyl groups on the pyridine rings or seven-membered aliphatic rings attached to the triazine rings, have been synthesized, and the effects of the additional alkyl substitution in the 4- and 4′-positions of the pyridine rings on their extraction properties with LnIII and AnIII cations in simulated nuclear waste solutions have been studied. The speciation of ligand 13 with some trivalent lanthanide nitrates was elucidated by 1H NMR spectroscopic titrations and ESI-MS. Although 13 formed both 1:1 and 1:2 complexes with LaIII and YIII, only 1:2 complexes were observed with EuIII and CeIII. Quite unexpectedly, both alkyl-substituted ligands 12 and 13 showed lower solubilities in certain diluents than the unsubstituted ligand CyMe4-BTBP. Compared to CyMe4-BTBP, alkyl-substitution was found to decrease the rates of metal-ion extraction of the ligands in both 1-octanol and cyclohexanone. A highly efficient (DAm > 10) and selective (SFAm/Eu > 90) extraction was observed for 12 and 13 in cyclohexanone and for 13 in 1-octanol in the presence of a phase-transfer agent. The implications of these results for the design of improved extractants for radioactive waste treatment are discussed.
Resumo:
Studies towards the biomimetic synthesis of mycaperoxide B (1) are described. We have established the synthesis of four diastereoisomers of mycaperoxide B methyl ester (1a) by employing a Michael addition across an α,β-unsaturated ester precursor 2 as the key step. This result strongly suggestsstereocontrol in the addition of the hydroperoxide functionality to the E double bond and discloses the importance of choosing the correct geometry of the α,β-unsaturated double bond when attempting to synthesise mycaperoxide B. Four diastereoisomeric tetrahydrofurans derived from an intramolecular rearrangement of the 1,2-dioxolane enolate 12 were also isolated and characterised.
Resumo:
The disruption of the human immunolobulin E–high affinity receptor I (IgE–FcεRI) protein–protein interaction (PPI) is a validated strategy for the development of anti asthma therapeutics. Here, we describe the synthesis of an array of conformationally constrained cyclic peptides based on an epitope of the A–B loop within the Cε3 domain of IgE. The peptides contain various tolan (i.e., 1,2-biarylethyne) amino acids and their fully and partially hydrogenated congeners as conformational constraints. Modest antagonist activity (IC50 660 μM) is displayed by the peptide containing a 2,2′-tolan, which is the one predicted by molecular modeling to best mimic the conformation of the native A–B loop epitope in IgE.
Resumo:
Novel bis(azidophenyl)phosphole sulfide building block 8 has been developed to give access to a plethora of phosphole-containing π-conjugated systems in a simple synthetic step. This was explored for the reaction of the two azido moieties with phenyl-, pyridyl- and thienylacetylenes, to give bis(aryltriazolyl)-extended π-systems, having either the phosphole sulfide (9) or the phosphole (10) group as central ring. These conjugated frameworks exhibit intriguing photophysical and electrochemical properties that vary with the nature of the aromatic end-group. The λ3-phospholes 10 display blue fluorescence (λem = 460–469 nm) with high quan-tum yield (ΦF = 0.134–0.309). The radical anion of pyridylsubstituted phosphole sulfide 9b was observed with UV/Vis spectroscopy. TDDFT calculations on the extended π-systems showed some variation in the shape of the HOMOs, which was found to have an effect on the extent of charge transfer, depending on the aromatic end-group. Some fine-tuning of the emission maxima was observed, albeit subtle, showing a decrease in conjugation in the order thienyl � phenyl � pyridyl. These results show that variations in the distal ends of such π-systems have a subtle but significant effect on photophysical properties.
Resumo:
The Fourier series can be used to describe periodic phenomena such as the one-dimensional crystal wave function. By the trigonometric treatements in Hückel theory it is shown that Hückel theory is a special case of Fourier series theory. Thus, the conjugated π system is in fact a periodic system. Therefore, it can be explained why such a simple theorem as Hückel theory can be so powerful in organic chemistry. Although it only considers the immediate neighboring interactions, it implicitly takes account of the periodicity in the complete picture where all the interactions are considered. Furthermore, the success of the trigonometric methods in Hückel theory is not accidental, as it based on the fact that Hückel theory is a specific example of the more general method of Fourier series expansion. It is also important for education purposes to expand a specific approach such as Hückel theory into a more general method such as Fourier series expansion.
Resumo:
Predominantly (E)-N-diphenylphosphinyl vinyl aziridines are prepared by a reaction of N-diphenylphosphinyl imines with α-bromoallyllithium in the presence of freshly fused ZnCl2. These aziridines undergo a ring-opening reaction with a variety of carbon and heteronucleophiles, in good yield, and generally with good regioselectivity.
Resumo:
Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens.
Resumo:
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010
Resumo:
An empirical nucleophilicity index based on the gas-phase ionization potentials has been recently shown to be useful categorizing and settling the nucleophilicity power of a series of captodative ethylenes reacting in cycloaddition reactions (L.R. Domingo, E. Chamorro, P. Perez, Journal of Organic Chemistry 73 (2008) 4615-4624). In the present work, the applicability of such model is tested within a broader series of substituted alkenes, substituted aromatic compounds and simple nucleophilic molecules. This index obtained within a Koopman`s theorem framework has been evaluated here in both gas and solution phases for several well-known nucleophiles. These results are found to be linearly correlated. Finally, the feasibility of the predictive character of this index has been discussed in comparison to the available experimental nucleophilicities of some amines in water. These results further support and validate the usefulness of such approximation in the modeling of the global nucleophilicity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
We wish to report here our initial efforts toward the total synthesis of the potent antitumor agent dictyostatin, describing a short and efficient synthesis of the C11-C23 fragment. ( (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
alpha-diamines, such as ethylendiamine and o-phenylendiamine, add to 3,4-aryl-disubstituted 1,2,5-thiadiazole 1,1-dioxides to give dihydropyrazines or quinoxalines, respectively and sulfamide. The new compound acenaphtho [5,6-b]-2,3-dihydropyrazine was synthesized and characterized. The addition of ethylendiamine to 3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide gives 3,4-disubstituted thiadiazoildine 1,1-dioxide, dihydropyrazines, or pyrazines, depending on the reaction condition used. The reactions were followed by cyclic voltammetry and NMR spectroscopy which, in some cases, allowed the detection of the thiadiazolidine intermediate. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Gamma-lactams and bicyclic oxazolidines are important structural frameworks in both synthetic organic chemistry and related pharmacological fields. These heterocycles can be prepared by the rhodium-catalyzed carbonylation of unsaturated amines. In this work, allylaminoalcohols, derived from the aminolysis of cyclohexene oxide, styrene oxide, (R)-(+)-limonene oxide, and ethyl-3-phenyl-glicidate, were employed as substrates. These allylaminoalcohols were carbonylated by employing RhClCO(PPh3)(2) as a precatalyst under varying CO/H-2 mixtures, and moderate to excellent yields were obtained, depending on the substrate used. The results indicated that an increase in the chelating ability of the substrate (-OH and -NHR moieties) decreased the conversion and selectivity of the ensuing reaction. Additionally, the selectivity could be optimized to favor either the gamma-lactams or the oxazolidines by controlling the CO/H-2 ratio. A large excess of CO provided a lactam selectivity of up to 90%, while a H-2-rich gas mixture improved the selectivity for oxazolidines, resulting from hydroformylation/cyclization. Studies of the reaction temperature indicated that an undesirable substrate deallylation reaction occurs at higher temperature (>100 degrees C). Further, kinetic studies have indicated that the oxazolidines and gamma-lactams were formed through parallel routes. Unfortunately, the mechanism for oxazolidines formation is not yet well understood. However, our results have led us to propose a catalytic cycle based on hydroformylation/acetalyzation pathways. The gamma-lactams formation follows a carbonylation route, mediated by a rhodium-carbamoylic intermediate, as previously reported. To this end, we have been able to prepare and isolate the corresponding iridium complex, which could be confirmed by X-ray crystallographic analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of the macrolactone core of migrastatin 2, its potent anti-metastasis analogue 34, and ester derivatives 35 and 38 are reported. The approach involves the use of a dihydroxylation reaction to establish the desired C-8 stereocenter followed by a metathesis cyclization reaction. The effects of the compounds on the migration and invasion of human breast cancer cells were evaluated by using the wound-healing and the Boyden-chamber cell-migration and cell-invasion assays. The results revealed a high potency of the macrolactones 2 and 34 and the ester analogues 35 and 38, which suggests they have potential as antimetastatic agents.