896 resultados para zirconia abutment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

I materiali bioceramici, in base alla loro capacità d’interazione con l’osso e i tessuti del corpo umano, possono essere classificati in bioinerti e bioattivi. I materiali bioinerti, una volta impiantati, formano uno strato fibroso, non aderente, all’interfaccia con l’osso. Tale strato è una forma naturale di protezione che l’organismo adotta per isolare il materiale che viene, inizialmente, percepito come estraneo. Al contrario, i materiali bioattivi, una volta impiantati, mostrano una risposta biologica immediata, creando un legame attivo con l’osso e i tessuti nel quale vengono impiantati, favorendo e velocizzando la guarigione. La zirconia è un materiale ceramico altamente biocompatibile, definito come bioinerte per la sua scarsa capacità d’integrazione con l’osso ed i tessuti dell’organismo umano. Questa sua particolarità può, nel lungo termine, comprometterne la funzione fino ad arrivare, in alcuni casi, al totale malfunzionamento dell’impianto. Negli ultimi anni, diversi studi sono stati condotti con lo scopo di aumentare la capacità di biointegrazione della zirconia ed alcuni brevetti sono stati depositati. L’obiettivo del presente lavoro è quello di condurre un’analisi bibliografica ed una ricerca brevettuale sul tema dei coating bioattivi su zirconia per impianti dentali ed ortopedici. La necessità di condurre questo studio deriva dalla crescente richiesta di utilizzo della zirconia, in particolare, nel settore dentale. La zirconia rappresenta, infatti, ad oggi, il migliore candidato per la sostituzione dei metalli negli impianti dentali. Le buone proprietà meccaniche, l’eccellente biocompatibilità e l’aspetto estetico molto simile a quello dei denti naturali, rendono questo materiale particolarmente adatto a questo genere di applicazioni. La possibilità di rendere la sua superficie bioattiva rappresenta un importante miglioramento delle prestazioni in termini di biointegrazione, durabilità, sicurezza ed affidabilità.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis inédita presentada en la Universidad Europea de Madrid. Facultad de Ciencias Biomédicas. Programa de Doctorado en Odontología Avanzada

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This was a retrospective cohort study designed to evaluate the clinical performance of ceramicveneered zirconia frameworks. Materials and Methods: Patients were recruited according to defined inclusion criteria. All patients were checked every 4 months from the time of definitive rehabilitation. At the end of 2013, all patients were rescheduled and rechecked for study purposes. The restorative procedures assessment was performed by previously established methods. The primary outcomes were the survival and success rates of the prosthesis. Descriptive statistics were used for the patient's demographics, implant distribution, and occurrence of complications. To study the survival and success of the prostheses, a Cox Regression analysis was used with a model constructed in a forward conditional stepwise mode. Predictive variables were included in the model, and adjusted survival curves were obtained for each outcome. Results: From 2008 to 2013, 75 patients were rehabilitated with 92 implant-supported, screw-retained, full-arch ceramic-veneered zirconia framework rehabilitations. The range of follow-up was between 6 months and 5 years. From the 92 full implant-supported screw-retained full-arch rehabilitations, Cox regression analysis indicated that within a 5-year time frame, the probability of framework fracture, major chipping, minor chipping, or any of the former combined to occur was 17.6%, 46.5%, 69.2%, and 90.5%, respectively. Conclusion: Results suggest zirconia as a suitable material for framework structure in implant-supported, full-arch rehabilitations. However, it experiences a high incidence of technical complications, mainly due to ceramic chipping. Further clinical studies should aim to ascertain the effects of clinical features and manufacturing procedures on the survival rates of these prostheses. © 2016 by Quintessence Publishing Co Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study directly measured the load acting on the abutment of the osseointegrated implant system of transfemoral amputees during level walking, and studied the variability of the load within and among amputees. Twelve active transfemoral amputees (age: 54±12 years, mass:84.3±16.3 kg, height: 17.8±0.10 m) fitted with an osseointegrated implant for over 1 year participated in the study. The load applied on the abutment was measured during unimpeded, level walking in a straight line using a commercial six-channel transducer mounted between the abutment and the prosthetic knee. The pattern and the magnitude of the three-dimensional forces and moments were revealed. Results showed a low step-to-step variability of each subject, but a high subject-to-subject variability in local extrema of body-weight normalized forces and moments and impulse data. The high subject-to-subject variability suggests that the mechanical design of the implant system should be customized for each individual, or that a fit-all design should take into consideration the highest values of load within a broad range of amputees. It also suggests specific loading regime in rehabilitation training are necessary for a given subject. Thus the loading magnitude and variability demonstrated should be useful in designing an osseointegrated implant system better able to resist mechanical failure and in refining the rehabilitation protocol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many ageing road bridges, particularly timber bridges, require urgent improvement due to the demand imposed by the recent version of the Australian bridge loading code, AS 5100. As traffic volume plays a key role in the decision of budget allocations for bridge refurbishment/ replacement, many bridges in low volume traffic network remain in poor condition with axle load and/ or speed restrictions, thus disadvantaging many rural communities. This thesis examines an economical and environmentally sensible option of incorporating disused flat rail wagons (FRW) in the construction of bridges in low volume, high axle load road network. The constructability, economy and structural adequacy of the FRW road bridge is reported in the thesis with particular focus of a demonstration bridge commissioned in regional Queensland. The demonstration bridge comprises of a reinforced concrete slab (RCS) pavement resting on two FRWs with custom designed connection brackets at regular intervals along the span of the bridge. The FRW-RC bridge deck assembly is supported on elastomeric rubber pads resting on the abutment. As this type of bridge replacement technology is new and its structural design is not covered in the design standards, the in-service structural performance of the FRW bridge subjected to the high axle loadings prescribed in AS 5100 is examined through performance load testing. Both the static and the moving load tests are carried out using a fully laden commonly available three-axle tandem truck. The bridge deck is extensively strain gauged and displacement at several key locations is measured using linear variable displacement transducers (LVDTs). A high speed camera is used in the performance test and the digital image data are analysed using proprietary software to capture the locations of the wheel positions on the bridge span accurately. The wheel location is thus synchronised with the displacement and strain time series to infer the structural response of the FRW bridge. Field test data are used to calibrate a grillage model, developed for further analysis of the FRW bridge to various sets of high axle loads stipulated in the bridge design standard. Bridge behaviour predicted by the grillage model has exemplified that the live load stresses of the FRW bridge is significantly lower than the yield strength of steel and the deflections are well below the serviceability limit state set out in AS 5100. Based on the results reported in this thesis, it is concluded that the disused FRWs are competent to resist high axle loading prescribed in AS 5100 and are a viable alternative structural solution of bridge deck in the context of the low volume road networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of solid strong acid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid strong acid counterparts were characterised by a variety of techniques including 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR), scanned electronic microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Nitrogen adsorption and infrared emission spectroscopy (IES). NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained solid acids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bactrocera dorsalis (Hendel) and B. papayae Drew & Hancock represent a closely related sibling species pair for which the biological species limits are unclear; i.e., it is uncertain if they are truely two biological species, or one biological species which has been incorrectly taxonomically split. The geographic ranges of the two taxa are thought to abut or overlap on or around the Isthmus of Kra, a recognised biogeographic barrier located on the narrowest portion of the Thai Peninsula. We collected fresh material of B. dorsalis sensu lato (i.e., B. dorsalis sensu stricto + B. papayae) in a north-south transect down the Thai Peninsula, from areas regarded as being exclusively B. dorsalis s.s., across the Kra Isthmus, and into regions regarded as exclusively B. papayae. We carried out microsatellite analyses and took measurements of male genitalia and wing shape. Both the latter morphological tests have been used previously to separate these two taxa. No significant population structuring was found in the microsatellite analysis and results were consistent with an interpretation of one, predominantly panmictic population. Both morphological datasets showed consistent, clinal variation along the transect, with no evidence for disjunction. No evidence in any tests supported historical vicariance driven by the Isthmus of Kra, and none of the three datasets supported the current taxonomy of two species. Rather, within and across the area of range overlap or abutment between the two species, only continuous morphological and genetic variation was recorded. Recognition that morphological traits previously used to separate these taxa are continuous, and that there is no genetic evidence for population segregation in the region of suspected species overlap, is consistent with a growing body of literature that reports no evidence of biological differentiation between these taxa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure of artificial grain boundaries in YBa2Cu3O7-δ (YBCO) thin films grown on [001] tilt YZrO2 (YSZ) bicrystal substrates has been characterized using transmission electron microscopy and atomic force microscopy. Despite a relatively straight morphology of the substrate boundaries, the film boundaries were wavy. The waviness was a result of the combined effects of grooving at the substrate boundaries prior to the film deposition and an island-growth mechanism for YBCO on YSZ substrates. The dihedral angle of the groove walls varied with the misorientation angle and depended on the symmetry of the substrate boundary. The amplitudes of the film boundary waviness compared well with the widths of the grooves. In addition, the grooves induced local bending of the YBCO lattice planes and additional tilt components perpendicular to the c-axis close to the film boundaries. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of the grain boundaries in epitaxial YBa2Cu3O7-δ thin films grown on [001]-tilt yttria-stabilized ZrO2 bicrystal substrates were characterized by TEM and at. force microscopy. The exact boundary plane geometries of the bicrystal substrates were not transferred to the films which instead had wiggling grain boundaries. [on SciFinder(R)]