950 resultados para virulence related-genes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Oral Squamous Cell Carcinoma (OSCC) is a major cause of cancer death worldwide, which is mainly due to recurrence leading to treatment failure and patient death. Histological status of surgical margins is a currently available assessment for recurrence risk in OSCC; however histological status does not predict recurrence, even in patients with histologically negative margins. Therefore, molecular analysis of histologically normal resection margins and the corresponding OSCC may aid in identifying a gene signature predictive of recurrence.Methods: We used a meta-analysis of 199 samples (OSCCs and normal oral tissues) from five public microarray datasets, in addition to our microarray analysis of 96 OSCCs and histologically normal margins from 24 patients, to train a gene signature for recurrence. Validation was performed by quantitative real-time PCR using 136 samples from an independent cohort of 30 patients.Results: We identified 138 significantly over-expressed genes (> 2-fold, false discovery rate of 0.01) in OSCC. By penalized likelihood Cox regression, we identified a 4-gene signature with prognostic value for recurrence in our training set. This signature comprised the invasion-related genes MMP1, COL4A1, P4HA2, and THBS2. Overexpression of this 4-gene signature in histologically normal margins was associated with recurrence in our training cohort (p = 0.0003, logrank test) and in our independent validation cohort (p = 0.04, HR = 6.8, logrank test).Conclusion: Gene expression alterations occur in histologically normal margins in OSCC. Over-expression of the 4-gene signature in histologically normal surgical margins was validated and highly predictive of recurrence in an independent patient cohort. Our findings may be applied to develop a molecular test, which would be clinically useful to help predict which patients are at a higher risk of local recurrence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTEs were assembled into 81,429 contigs. of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTEs sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTEs coincided with DNA regions predicted as encoding exons by GENSCAN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O músculo estriado esquelético é formado pela associação de fibras musculares com a matriz extracelular. Esse tecido possui alta plasticidade e o conhecimento das características morfológicas, da miogênese, e da dinâmica do crescimento é importante para o entendimento da morfofisiologia bem como para a seleção de animais visando a melhoria na produção de carne. A maioria dos músculos estriados originam-se de células precursoras do mesoderma a partir dos somitos do embrião e o controle da diferenciação ocorre pela ação de fatores indutores ou inibidores. Um grupo de fatores transcricionais, pertencentes à família MyoD tem um papel central na diferenciação muscular. Coletivamente chamados de Fatores de Regulação Miogênica (MRFs), são conhecidos quatro tipos: MyoD, myf-5, miogenina e MRF4. Esses fatores ligam-se à seqüências de DNA conhecidas como Ebox (CANNTG) na região promotora de vários genes músculo-específicos, levando à expressão dos mesmos. As células embrionárias com potencial para diferenciação em células musculares (células precursoras miogênicas) expressam MyoD e Myf-5 e são denominadas de mioblastos. Essas células proliferam, saem do ciclo celular, expressam miogenina e MRF4, que regulam a fusão e a diferenciação da fibra muscular. Uma população de mioblastos que se diferencia mais tardiamente, as células miossatélites, são responsáveis pelo crescimento muscular no período pós natal, que pode ocorrer por hiperplasia e hipertrofia das fibras. As células satélites quiescentes não expressam os MRFs, porém, sob a ação de estímulos como fatores de crescimento ou citocinas, ocorre a ativação desse tipo celular que prolifera e expressa os MRFs de maneira similar ao que ocorre com as células precursoras miogênicas durante a miogênese. Os mecanismos de crescimento muscular são regulados pela expressão temporal dos (MRFs), que controlam a expressão dos genes relacionados com o crescimento muscular.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genus Paracoccidioides includes the thermodimorphic species Paracoccidioides brasiliensis and P. lutzii, both of which are etiologic agents of paracoccidioidomycosis, a systemic mycosis that affects humans in Latin America. Despite the common occurrence of a sexual stage among closely related fungi, this has not been observed with Paracoccidioides species, which have thus been considered asexual. Molecular evolutionary studies revealed recombination events within isolated populations of the genus Paracoccidioides, suggesting the possible existence of a sexual cycle. Comparative genomic analysis of all dimorphic fungi and Saccharomyces cerevisiae demonstrated the presence of conserved genes involved in sexual reproduction, including those encoding mating regulators such as MAT, pheromone receptors, pheromone-processing enzymes, and mating signaling regulators. The expression of sex-related genes in the yeast and mycelial phases of both Paracoccidioides species was also detected by realtime PCR, with nearly all of these genes being expressed preferentially in the filamentous form of the pathogens. In addition, the expression of sex-related genes was responsive to the putative presence of pheromone in the supernatants obtained from previous cocultures of strains of two different mating types. In vitro crossing of isolates of different mating types, discriminated by phylogenetic analysis of the α-box (MAT1-1) and the high-mobility-group (HMG) domain (MAT1-2), led to the identification of the formation of young ascocarps with constricted coiled hyphae related to the initial stage of mating. These genomic and morphological analyses strongly support the existence of a sexual cycle in species of the genus Paracoccidioides. © 2013, American Society for Microbiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium (Mg2+) deficiency is a frequently occurring disorder that leads to loss of bone mass, abnormal bone growth and skeletal weakness. It is not clear whether Mg2+ deficiency affects the formation and/or activity of osteoclasts. We evaluated the effect of Mg2+ restriction on these parameters. Bone marrow cells from long bone and jaw of mice were seeded on plastic and on bone in medium containing different concentrations of Mg2+ (0.8 mM which is 100% of the normal value, 0.4, 0.08 and 0 mM). The effect of Mg2+ deficiency was evaluated on osteoclast precursors for their viability after 3 days and proliferation rate after 3 and 6 days, as was mRNA expression of osteoclastogenesis-related genes and Mg2+-related genes. After 6 days of incubation, the number of tartrate resistant acid phosphatase-positive (TRACP+) multinucleated cells was determined, and the TRACP activity of the medium was measured. Osteoclastic activity was assessed at 8 days by resorption pit analysis. Mg2+ deficiency resulted in increased numbers of osteoclast-like cells, a phenomenon found for both types of marrow. Mg2+ deficiency had no effect on cell viability and proliferation. Increased osteoclastogenesis due to Mg2+ deficiency was reflected in higher expression of osteoclast-related genes. However, resorption per osteoclast and TRACP activity were lower in the absence of Mg2+. In conclusion, Mg2+ deficiency augmented osteoclastogenesis but appeared to inhibit the activity of these cells. Together, our in vitro data suggest that altered osteoclast numbers and activity may contribute to the skeletal phenotype as seen in Mg2+ deficient patients. © 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial fruit blotch of cucurbits (BFB), caused by the seed borne Gramnegative bacterium Acidovorax citrulli is a serious threat to cucurbit industry worldwide. Since late 1980`s after devastating outbreaks in watermelon fields in southern United States, BFB has spread worldwide and has been reported in other cucurbit crops such as melon, pumpkin, cucumber and squash. To date, there is evidence for the existence of at least two genetically and pathogenically distinct populations of A. citrulli. In Brazil, the first report of BFB was in 1991, in a watermelon field in São Paulo. Although widespread in the country, BFB has been a major problem to melon production. More precisely, BFB has caused significant yield losses to melon production in northeastern Brazil, which concentrates > 90% of the country`s melon production. Despite the management efforts and the recent advances in A. citrulli research, BFB is still a continuous threat to the cucurbit industry, including seed producers, growers and transplant nurseries. To better understand the population structure of A. citrulli strains in Brazil, and to provide a basis for the integrated management of BFB, we used pulsed-field gel electrophoresis (PFGE), multilocus sequence analysis (MLSA) of housekeeping and virulence-associated genes and pathogenicity tests on different cucurbit seedlings to characterize a Brazilian population of A. citrulli strains from different hosts and regions. Additionally, we conducted for the first time a comparative analysis of the A. citrulli group I and II population at genomic level and showed that these two groups differ on their genome sizes due to the presence of eight DNA segments, which are present in group II and absent in group I genomes. We also provide the first evidence to suggest that temperature might be a driver in the ecological adaptation of A. citrulli populations under nutrient-rich or -depleted conditions. Finally, in order to improve the routine detection of A. citrulli on melon seedlots, we designed a new primer set that is able to detect the different Brazilian haplotypes, thus minimizing the risk of false-negatives on PCR-based seed health testing.