997 resultados para trust evolution
Resumo:
Inorganic nano-graphene hybrid materials that are strongly coupled via chemical bonding usually present superior electrochemical performance. However, how the chemical bond forms and the synergistic catalytic mechanism remain fundamental questions. In this study, the chemical bonding of the MoS2 nanolayer supported on vacancy mediated graphene and the hydrogen evolution reaction of this nanocatalyst system were investigated. An obvious reduction of the metallic state of the MoS2 nanolayer is noticed as electrons are transferred to form a strong contact with the reduced graphene support. The missing metallic state associated with the unsaturated atoms at the peripheral sites in turn modifies the hydrogen evolution activity. The easiest evolution path is from the Mo edge sites, with the presence of the graphene resulting in a decrease in the energy barrier from 0.17 to 0.11 eV. Evolution of H2 from the S edge becomes more difficult due to an increase in the energy barrier from 0.43 to 0.84 eV. The clarification of the chemical bonding and catalytic mechanisms for hydrogen evolution using this strongly coupled MoS2/graphene nanocatalyst provide a valuable source of reference and motivation for further investigation for improved hydrogen evolution using chemically active nanocoupled systems.
Resumo:
With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.
Resumo:
Eclogites and their retrogressed equivalents from the eastern unit of the Glenelg-Attadale Inlier in NW Scotland preserve much microstructural evidence that indicates that very high-pressure/temperature eclogite facies conditions were reached, and followed by decompression and hydration during exhumation. Rutile exsolution in garnet and quartz exsolution in omphacite and titanite formed through mineral reactions during high P-T peak metamorphism. Isochemical phase diagrams modeled for samples from three different locations indicate that the outer part of the eastern unit preserves a peak metamorphic condition of c. 850-1000 degrees C at 18-25 kbar, whereas the central part has a similar pressure (c. 23 kbar), but a lower temperature (c. 670 degrees C). Due to the limitations in the phase diagram calculations the estimated P-T conditions represent the minimum conditions attained by the peak metamorphic assemblage, and the pre-exsoived peak assemblage probably stabilized at a higher pressure. This observation is strongly supported by the presence of exsolution microstructures. The present results demonstrate that the eastern unit experienced very high P-T conditions during peak metamorphism and a tight clockwise P-T trajectory and provide the first indication of possible ultrahigh-pressure metamorphism in the Glenelg eclogites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The time evolution of the film thickness and domain formation of octadecylamine molecules adsorbed oil a mica surface is investigated Using atomic force microscopy. The adsorbed Film thickness is determined by measuring the height profile across the mica-amine interface of a mica surface partially immersed in a 15 mM solution of octadecylamine in chloroform. Using this novel procedure, adsorption of amine on mica is found to occur in three distinct stages, with morphologically distinct domain Formation and growth occurring during each stage. In the first stage, where adsorption is primarily in the thin-film regime, all average Film thickness of 0.2 (+/- 0.3) nm is formed for exposure times below 30 s and 0.8 (+/- 0.2) nm for 60 s of immersion time. During this stage, large sample spanning domains are observed. The second stage, which occurs between 60-300 s, is associated with it regime of rapid film growth, and the film thickness increases from about 0.8 to 25 nm during this stage. Once the thick-film regime is established, further exposure to the amine solution results in all increase in the domain area, and it regime of lateral domain growth is observed. In this stage, the domain area coverage grows from 38 to 75%, and the FTIR spectra reveal an increased level of crystallinity in the film. Using it diffusion-controlled model and it two-step Langmuir isotherm, the time evolution of the film growth is quantitatively captured. The model predicts the time at which the thin to thick film transition occurs as well its the time required for complete film growth at longer times. The Ward-Tordai equation is also solved to determine the model parameters in the monolayer (thin-film) regime, which occurs during the initial stages of film growth.
Resumo:
Restriction endonucleases (REases) protect bacteria from invading foreign DNAs and are endowed with exquisite sequence specificity. REases have originated from the ancestral proteins and evolved new sequence specificities by genetic recombination, gene duplication, replication slippage, and transpositional events. They are also speculated to have evolved from nonspecific endonucleases, attaining a high degree of sequence specificity through point mutations. We describe here an example of generation of exquisitely site-specific REase from a highly-promiscuous one by a single point mutation.
Resumo:
Transparent glasses and glass nano crystal composites (GNCs) of various compositions in the system (100 - x)Li2B4O7-x (BaO-Bi2O3-Nb2O5) (where x = 10, 20, and 30 in molar ratio) were fabricated via splat-quenching technique. The glassy nature of the as quenched samples was established by differential thermal analyses. X-ray powder diffraction and transmission electron microscopic (TEM) studies confirmed the formation of layered perovskite BBN via a fluorite like phase. TEM studies revealed the presence of 10 nm sized spherical crystallites of fluorite like BaBi2Nb2O9 phase in the glassy matrix of Li2B4O7 (LBO). The influence of composition on the dielectric and the optical properties (transmission, optical band gap) of these samples has been investigated. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A Delay Tolerant Network (DTN) is a dynamic, fragmented, and ephemeral network formed by a large number of highly mobile nodes. DTNs are ephemeral networks with highly mobile autonomous nodes. This requires distributed and self-organised approaches to trust management. Revocation and replacement of security credentials under adversarial influence by preserving the trust on the entity is still an open problem. Existing methods are mostly limited to detection and removal of malicious nodes. This paper makes use of the mobility property to provide a distributed, self-organising, and scalable revocation and replacement scheme. The proposed scheme effectively utilises the Leverage of Common Friends (LCF) trust system concepts to revoke compromised security credentials, replace them with new ones, whilst preserving the trust on them. The level of achieved entity confidence is thereby preserved. Security and performance of the proposed scheme is evaluated using an experimental data set in comparison with other schemes based around the LCF concept. Our extensive experimental results show that the proposed scheme distributes replacement credentials up to 35% faster and spreads spoofed credentials of strong collaborating adversaries up to 50% slower without causing any significant increase on the communication and storage overheads, when compared to other LCF based schemes.
Resumo:
Experiments were conducted with two, smooth hills, lying well within the boundary layer over a flat plate mounted in a wind tunnel. One hill was shallow, with peak height 1.5 mm and width 50 mm; the other, steep, 3 mm high and 30 mm wide. Since the hills occupied one-half of the tunnel span, streamwise vorticity formed near the hills' edge. At a freestream speed of 3.5 m/s, streaks formed with inflectional wall-normal and spanwise velocity profiles but without effecting transition. Transition, observed at 7.5 m/s, took different routes with the two hills. With the steep hill, streamwise velocity signals exhibited the passage of a wave packet which intensified before breakdown to turbulence. With the shallow hill there was a broad range of frequencies present immediately downstream of the hill. These fluctuations grew continuously and transition occurred within a shorter distance. Since the size of the streamwise vorticity generated at the hill edge is of the order of the hill height, the shallow hill generates vorticity closer to the wall and supports an earlier transition, whereas the steep hill creates a thicker vortex and associated streaks which exhibit oscillations due to their own instability as an additional precursor stage before transition.
Resumo:
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules,naiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The microstructural evolution of concentrated alloys is relatively less understood both in terms of experiments as well as theory. Laser resolidification represents a powerful technique to study the solidification behavior under controlled growth conditions. This technique has been utilized in the current study to probe experimentally microstructural selection during rapid solidification of concentrated Fe-25 atom pct Ge alloy. Under the equilibrium solidification condition, the alloy undergoes a peritectic reaction between ordered alpha(2) (B2) and its liquid, leading to the formation of ordered hexagonal intermetallic phase epsilon (DO19). In general, the as-cast microstructure consists of epsilon phase and e-p eutectic and alpha(2) that forms as a result of an incomplete peritectic reaction. With increasing laser scanning velocity, the solidification front undergoes a number of morphological transitions leading to the selection of the microstructure corresponding to metastable alpha(2)/beta eutectic to alpha(2) dendrite + alpha(2)/beta eutectic to alpha(2) dendrite. The transition velocities as obtained from the experiments are well characterized. The microstructural selection is discussed using competitive growth kinetics.
Resumo:
A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state C-13{H-1} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecularmass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their C-13{H-1} CPMAS NMR spectral pattern. A doublet resonance pattern of C-13 signals in C-13{H-1}CPMAS NMR spectra were observed for the gelator molecules, whereas the non-gelators showed simple singlet resonance or resulted inthe formation of inclusion complexes/solvates. PXRD patterns revealed a close isomorphous nature of the gelators indicating the similarity in the mode of the packing pattern in their solid state. Direct imaging of the evolution of nanofibers (sol-gel transition) was carried out using POM, which proved the presence of self-assembled fibrillar networks (SAFINs) in the gel. Finally powder X-ray structure determination revealed the presence of two non-equivalent molecules in an asymmetric unit which is responsible for the doublet resonance pattern in the solid state NMR spectra.
Resumo:
The book presents a reconstruction, interpretation and critical evaluation of the Schumpeterian theoretical approach to socio-economic change. The analysis focuses on the problem of social evolution, on the interpretation of the innovation process and business cycles and, finally, on Schumpeter s optimistic neglect of ecological-environmental conditions as possible factors influencing social-economic change. The author investigates how the Schumpeterian approach describes the process of social and economic evolution, and how the logic of transformations is described, explained and understood in the Schumpeterian theory. The material of the study includes Schumpeter s works written after 1925, a related part of the commentary literature on these works, and a selected part of the related literature on the innovation process, technological transformations and the problem of long waves. Concerning the period after 1925, the Schumpeterian oeuvre is conceived and analysed as a more or less homogenous corpus of texts. The book is divided into 9 chapters. Chapters 1-2 describe the research problems and methods. Chapter 3 is an effort to provide a systematic reconstruction of Schumpeter's ideas concerning social and economic evolution. Chapters 4 and 5 focus their analysis on the innovation process. In Chapters 6 and 7 Schumpeter's theory of business cycles is examined. Chapter 8 evaluates Schumpeter's views concerning his relative neglect of ecological-environmental conditions as possible factors influencing social-economic change. Finally, chapter 9 draws the main conclusions.
Resumo:
The Palu Metamorphic Complex (PMC) is exposed in a late Cenozoic orogenic belt in NW Sulawesi, Indonesia. It is a composite terrane comprising a gneiss unit of Gondwana origin, a schist unit composed of meta-sediments deposited along the SE Sundaland margin in the Late Cretaceous and Early Tertiary, and one or more slivers of amphibolite with oceanic crust characteristics. The gneiss unit forms part of the West Sulawesi block underlying the northern and central sections of the Western Sulawesi Province. The presence of Late Triassic granitoids and recycled Proterozoic zircons in this unit combined with its isotopic signature suggests that the West Sulawesi block has its origin in the New Guinea margin from which it rifted in the late Mesozoic. It docked with Sundaland sometime during the Late Cretaceous. U–Th–Pb dating results for monazite suggest that another continental fragment may have collided with the Sundaland margin in the earliest Miocene. High-pressure (HP) and ultrahigh-pressure (UHP) rocks (granulite, peridotite, eclogite) are found as tectonic slices within the PMC, mostly along the Palu–Koro Fault Zone, a major strike-slip fault that cuts the complex. Mineralogical and textural features suggest that some of these rocks resided at depths of 60–120 km during a part of their histories. Thermochronological data (U–Th–Pb zircon and 40Ar/39Ar) from the metamorphic rocks indicate a latest Miocene to mid-Pliocene metamorphic event, which was accompanied by widespread granitoid magmatism and took place in an extensional tectonic setting. It caused recrystallization of, and new overgrowths on, pre-existing zircon crystals, and produced andalusite–cordierite–sillimanite–staurolite assemblages in pelitic protoliths, indicating HT–LP (Buchan-type) metamorphism. The PMC was exhumed as a core complex at moderate rates (c. 0.7–1.0 mm/yr) accompanied by rapid cooling in the Plio-Pleistocene. Some of the UHP rocks were transported to the surface at significantly higher rates (⩾16 mm/yr). The results of our study do not support recent plate tectonic reconstructions that propose a NW Australia margin origin for the West Sulawesi block (e.g. Hall et al., 2009).