800 resultados para task performance
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Research on the mechanisms and processes underlying navigation has traditionally been limited by the practical problems of setting up and controlling navigation in a real-world setting. Thanks to advances in technology, a growing number of researchers are making use of computer-based virtual environments to draw inferences about real-world navigation. However, little research has been done on factors affecting human–computer interactions in navigation tasks. In this study female students completed a virtual route learning task and filled out a battery of questionnaires, which determined levels of computer experience, wayfinding anxiety, neuroticism, extraversion, psychoticism and immersive tendencies as well as their preference for a route or survey strategy. Scores on personality traits and individual differences were then correlated with the time taken to complete the navigation task, the length of path travelled,the velocity of the virtual walk and the number of errors. Navigation performance was significantly influenced by wayfinding anxiety, psychoticism, involvement and overall immersive tendencies and was improved in those participants who adopted a survey strategy. In other words, navigation in virtual environments is effected not only by navigational strategy, but also an individual’s personality, and other factors such as their level of experience with computers. An understanding of these differences is crucial before performance in virtual environments can be generalised to real-world navigational performance.
Resumo:
In cognitive tests, animals are often given a choice between two options and obtain a reward if they choose correctly. We investigated whether task format affects subjects' performance in a physical cognition test. In experiment 1, a two-choice memory test, 15 marmosets, Callithrix jacchus, had to remember the location of a food reward over time delays of increasing duration. We predicted that their performance would decline with increasing delay, but this was not found. One possible explanation was that the subjects were not sufficiently motivated to choose correctly when presented with only two options because in each trial they had a 50% chance of being rewarded. In experiment 2, we explored this possibility by testing eight naïve marmosets and seven squirrel monkeys, Saimiri sciureus, with both the traditional two-choice and a new nine-choice version of the memory test that increased the cost of a wrong choice. We found that task format affected the monkeys' performance. When choosing between nine options, both species performed better and their performance declined as delays became longer. Our results suggest that the two-choice format compromises the assessment of physical cognition, at least in memory tests with these New World monkeys, whereas providing more options, which decreases the probability of obtaining a reward when making a random guess, improves both performance and measurement validity of memory. Our findings suggest that two-choice tasks should be used with caution in comparisons within and across species because they are prone to motivational biases.
Resumo:
From an ecological perspective knowledge signifies the degree of fitness of a performer and his/her environment. From this viewpoint, the role of training is to enhance this degree of fit between a specific athlete and the performance environment, instead of the enrichment of memory in the performer. In this regard, ecological psychology distinguishes between perceptual knowledge or "knowledge of" the environment and symbolic knowledge or "knowledge about" the environment. This distinction elucidates how knowing how to act (knowing of) as well as knowing how to verbalise memorial representations (e.g., a verbal description of performance) (knowing about) are both rooted in perception. In this chapter we demonstrate these types of knowledge in decision-making behaviour and exemplify how they can be presented in 1 v 1 practice task contraints in basketball.
Resumo:
The identification of attractors is one of the key tasks in studies of neurobiological coordination from a dynamical systems perspective, with a considerable body of literature resulting from this task. However, with regards to typical movement models investigated, the overwhelming majority of actions studied previously belong to the class of continuous, rhythmical movements. In contrast, very few studies have investigated coordination of discrete movements, particularly multi-articular discrete movements. In the present study, we investigated phase transition behavior in a basketball throwing task where participants were instructed to shoot at the basket from different distances. Adopting the ubiquitous scaling paradigm, throwing distance was manipulated as a candidate control parameter. Using a cluster analysis approach, clear phase transitions between different movement patterns were observed in performance of only two of eight participants. The remaining participants used a single movement pattern and varied it according to throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in movement models involving many biomechanical degrees of freedom in degenerate systems, greater movement variation across individuals is available for exploitation. This observation stands in contrast to movement variation typically observed in studies using more constrained bi-manual movement models. This degenerate system behavior provides new insights and poses fresh challenges to the dynamical systems theoretical approach, requiring further research beyond conventional movement models.
Resumo:
INTRODUCTION In their target article, Yuri Hanin and Muza Hanina outlined a novel multidisciplinary approach to performance optimisation for sport psychologists called the Identification-Control-Correction (ICC) programme. According to the authors, this empirically-verified, psycho-pedagogical strategy is designed to improve the quality of coaching and consistency of performance in highly skilled athletes and involves a number of steps including: (i) identifying and increasing self-awareness of ‘optimal’ and ‘non-optimal’ movement patterns for individual athletes; (ii) learning to deliberately control the process of task execution; and iii), correcting habitual and random errors and managing radical changes of movement patterns. Although no specific examples were provided, the ICC programme has apparently been successful in enhancing the performance of Olympic-level athletes. In this commentary, we address what we consider to be some important issues arising from the target article. We specifically focus attention on the contentious topic of optimization in neurobiological movement systems, the role of constraints in shaping emergent movement patterns and the functional role of movement variability in producing stable performance outcomes. In our view, the target article and, indeed, the proposed ICC programme, would benefit from a dynamical systems theoretical backdrop rather than the cognitive scientific approach that appears to be advocated. Although Hanin and Hanina made reference to, and attempted to integrate, constructs typically associated with dynamical systems theoretical accounts of motor control and learning (e.g., Bernstein’s problem, movement variability, etc.), these ideas required more detailed elaboration, which we provide in this commentary.
Resumo:
Two experiments involving 87 undergraduates examined whether happiness produces increased performance on a physical task and tested whether self-efficacy mediated the results. When mood inductions covered the full range from happy to sad, mood influenced physical performance; however, evidence regarding self-efficacy was equivocal. Efficacy for the performed task was unaffected by mood, although it remained a good predictor of performance. Since mood altered efficacy for a nonperformed but more familiar task, inconsistent efficacy results could reflect task differences. Findings offer prospects for the use of mood inductions in practical sporting situations.
Resumo:
The driving task requires sustained attention during prolonged periods, and can be performed in highly predictable or repetitive environments. Such conditions could create drowsiness or hypovigilance and impair the ability to react to critical events. Identifying vigilance decrement in monotonous conditions has been a major subject of research, but no research to date has attempted to predict this vigilance decrement. This pilot study aims to show that vigilance decrements due to monotonous tasks can be predicted through mathematical modelling. A short vigilance task sensitive to short periods of lapses of vigilance called Sustained Attention to Response Task is used to assess participants’ performance. This task models the driver’s ability to cope with unpredicted events by performing the expected action. A Hidden Markov Model (HMM) is proposed to predict participants’ hypovigilance. Driver’s vigilance evolution is modelled as a hidden state and is correlated to an observable variable: the participant’s reactions time. This experiment shows that the monotony of the task can lead to an important vigilance decline in less than five minutes. This impairment can be predicted four minutes in advance with an 86% accuracy using HMMs. This experiment showed that mathematical models such as HMM can efficiently predict hypovigilance through surrogate measures. The presented model could result in the development of an in-vehicle device that detects driver hypovigilance in advance and warn the driver accordingly, thus offering the potential to enhance road safety and prevent road crashes.
Resumo:
This study investigated the effects of visual status, driver age and the presence of secondary distracter tasks on driving performance. Twenty young (M = 26.8 years) and 19 old (M = 70.2 years) participants drove around a closed-road circuit under three visual (normal, simulated cataracts, blur) and three distracter conditions (none, visual, auditory). Simulated visual impairment, increased driver age and the presence of a distracter task detrimentally affected all measures of driving performance except gap judgments and lane keeping. Significant interaction effects were evident between visual status, age and distracters; simulated cataracts had the most negative impact on performance in the presence of visual distracters and a more negative impact for older drivers. The implications of these findings for driving behaviour and acquisition of driving-related information for people with common visual impairments are discussed
Resumo:
This study is the first to investigate the effect of prolonged reading on reading performance and visual functions in students with low vision. The study focuses on one of the most common modes of achieving adequate magnification for reading by students with low vision, their close reading distance (proximal or relative distance magnification). Close reading distances impose high demands on near visual functions, such as accommodation and convergence. Previous research on accommodation in children with low vision shows that their accommodative responses are reduced compared to normal vision. In addition, there is an increased lag of accommodation for higher stimulus levels as may occur at close reading distance. Reduced accommodative responses in low vision and higher lag of accommodation at close reading distances together could impact on reading performance of students with low vision especially during prolonged reading tasks. The presence of convergence anomalies could further affect reading performance. Therefore, the aims of the present study were 1) To investigate the effect of prolonged reading on reading performance in students with low vision 2) To investigate the effect of prolonged reading on visual functions in students with low vision. This study was conducted as cross-sectional research on 42 students with low vision and a comparison group of 20 students with normal vision, aged 7 to 20 years. The students with low vision had vision impairments arising from a range of causes and represented a typical group of students with low vision, with no significant developmental delays, attending school in Brisbane, Australia. All participants underwent a battery of clinical tests before and after a prolonged reading task. An initial reading-specific history and pre-task measurements that included Bailey-Lovie distance and near visual acuities, Pelli-Robson contrast sensitivity, ocular deviations, sensory fusion, ocular motility, near point of accommodation (pull-away method), accuracy of accommodation (Monocular Estimation Method (MEM)) retinoscopy and Near Point of Convergence (NPC) (push-up method) were recorded for all participants. Reading performance measures were Maximum Oral Reading Rates (MORR), Near Text Visual Acuity (NTVA) and acuity reserves using Bailey-Lovie text charts. Symptoms of visual fatigue were assessed using the Convergence Insufficiency Symptom Survey (CISS) for all participants. Pre-task measurements of reading performance and accuracy of accommodation and NPC were compared with post-task measurements, to test for any effects of prolonged reading. The prolonged reading task involved reading a storybook silently for at least 30 minutes. The task was controlled for print size, contrast, difficulty level and content of the reading material. Silent Reading Rate (SRR) was recorded every 2 minutes during prolonged reading. Symptom scores and visual fatigue scores were also obtained for all participants. A visual fatigue analogue scale (VAS) was used to assess visual fatigue during the task, once at the beginning, once at the middle and once at the end of the task. In addition to the subjective assessments of visual fatigue, tonic accommodation was monitored using a photorefractor (PlusoptiX CR03™) every 6 minutes during the task, as an objective assessment of visual fatigue. Reading measures were done at the habitual reading distance of students with low vision and at 25 cms for students with normal vision. The initial history showed that the students with low vision read for significantly shorter periods at home compared to the students with normal vision. The working distances of participants with low vision ranged from 3-25 cms and half of them were not using any optical devices for magnification. Nearly half of the participants with low vision were able to resolve 8-point print (1M) at 25 cms. Half of the participants in the low vision group had ocular deviations and suppression at near. Reading rates were significantly reduced in students with low vision compared to those of students with normal vision. In addition, there were a significantly larger number of participants in the low vision group who could not sustain the 30-minute task compared to the normal vision group. However, there were no significant changes in reading rates during or following prolonged reading in either the low vision or normal vision groups. Individual changes in reading rates were independent of their baseline reading rates, indicating that the changes in reading rates during prolonged reading cannot be predicted from a typical clinical assessment of reading using brief reading tasks. Contrary to previous reports the silent reading rates of the students with low vision were significantly lower than their oral reading rates, although oral and silent reading was assessed using different methods. Although the visual acuity, contrast sensitivity, near point of convergence and accuracy of accommodation were significantly poorer for the low vision group compared to those of the normal vision group, there were no significant changes in any of these visual functions following prolonged reading in either group. Interestingly, a few students with low vision (n =10) were found to be reading at a distance closer than their near point of accommodation. This suggests a decreased sensitivity to blur. Further evaluation revealed that the equivalent intrinsic refractive errors (an estimate of the spherical dioptirc defocus which would be expected to yield a patient’s visual acuity in normal subjects) were significantly larger for the low vision group compared to those of the normal vision group. As expected, accommodative responses were significantly reduced for the low vision group compared to the expected norms, which is consistent with their close reading distances, reduced visual acuity and contrast sensitivity. For those in the low vision group who had an accommodative error exceeding their equivalent intrinsic refractive errors, a significant decrease in MORR was found following prolonged reading. The silent reading rates however were not significantly affected by accommodative errors in the present study. Suppression also had a significant impact on the changes in reading rates during prolonged reading. The participants who did not have suppression at near showed significant decreases in silent reading rates during and following prolonged reading. This impact of binocular vision at near on prolonged reading was possibly due to the high demands on convergence. The significant predictors of MORR in the low vision group were age, NTVA, reading interest and reading comprehension, accounting for 61.7% of the variances in MORR. SRR was not significantly influenced by any factors, except for the duration of the reading task sustained; participants with higher reading rates were able to sustain a longer reading duration. In students with normal vision, age was the only predictor of MORR. Participants with low vision also reported significantly greater visual fatigue compared to the normal vision group. Measures of tonic accommodation however were little influenced by visual fatigue in the present study. Visual fatigue analogue scores were found to be significantly associated with reading rates in students with low vision and normal vision. However, the patterns of association between visual fatigue and reading rates were different for SRR and MORR. The participants with low vision with higher symptom scores had lower SRRs and participants with higher visual fatigue had lower MORRs. As hypothesized, visual functions such as accuracy of accommodation and convergence did have an impact on prolonged reading in students with low vision, for students whose accommodative errors were greater than their equivalent intrinsic refractive errors, and for those who did not suppress one eye. Those students with low vision who have accommodative errors higher than their equivalent intrinsic refractive errors might significantly benefit from reading glasses. Similarly, considering prisms or occlusion for those without suppression might reduce the convergence demands in these students while using their close reading distances. The impact of these prescriptions on reading rates, reading interest and visual fatigue is an area of promising future research. Most importantly, it is evident from the present study that a combination of factors such as accommodative errors, near point of convergence and suppression should be considered when prescribing reading devices for students with low vision. Considering these factors would also assist rehabilitation specialists in identifying those students who are likely to experience difficulty in prolonged reading, which is otherwise not reflected during typical clinical reading assessments.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
Driving on motorways has largely been reduced to a lane-keeping task with cruise control. Rapidly, drivers are likely to get bored with such a task and take their attention away from the road. This is of concern in terms of road safety – particularly for professional drivers - since inattention has been identified as one of the main contributing factors to road crashes and is estimated to be involved in 20 to 30% of these crashes. Furthermore, drivers are not aware that their vigilance level has decreased and that their driving performance is impaired. Intelligent Transportation System (ITS) intervention can be used as a countermeasure against vigilance decrement. This paper aims to identify a variety of metrics impacted during monotonous driving - ranging from vehicle data to physiological variables - and relate them to two monotonous factors namely the monotony of the road design (straightness) and the monotony of the environment (landscape, signage, traffic). Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). The two monotonous factors are varied (high and low) leading to the use of four different driving scenarios (40 minutes each). We show with Generalised Linear Mixed Models that driver performance decreases faster when the road is monotonous. We also highlight that road monotony impairs a variety of driving performance and vigilance measures, ranging from speed, lateral position of the vehicle to physiological measurements such as heart rate variability, blink frequency and electrodermal activity. This study informs road designers of the importance of having a varied road environment. It also provides a range of metrics that can be used to detect in real-time the impairment of driving performance on monotonous roads. Such knowledge could result in the development of an in-vehicle device warning drivers at early signs of driving performance impairment on monotonous roads.