963 resultados para synthesis technique
Resumo:
We propose a modification of the nonlinear digital signal processing technique based on the nonlinear inverse synthesis for the systems with distributed Raman amplification. The proposed path-average approach offers 3 dB performance gain, regardless of the signal power profile.
Resumo:
In broad terms — including a thief's use of existing credit card, bank, or other accounts — the number of identity fraud victims in the United States ranges 9-10 million per year, or roughly 4% of the US adult population. The average annual theft per stolen identity was estimated at $6,383 in 2006, up approximately 22% from $5,248 in 2003; an increase in estimated total theft from $53.2 billion in 2003 to $56.6 billion in 2006. About three million Americans each year fall victim to the worst kind of identity fraud: new account fraud. Names, Social Security numbers, dates of birth, and other data are acquired fraudulently from the issuing organization, or from the victim then these data are used to create fraudulent identity documents. In turn, these are presented to other organizations as evidence of identity, used to open new lines of credit, secure loans, “flip” property, or otherwise turn a profit in a victim's name. This is much more time consuming — and typically more costly — to repair than fraudulent use of existing accounts. ^ This research borrows from well-established theoretical backgrounds, in an effort to answer the question – what is it that makes identity documents credible? Most importantly, identification of the components of credibility draws upon personal construct psychology, the underpinning for the repertory grid technique, a form of structured interviewing that arrives at a description of the interviewee’s constructs on a given topic, such as credibility of identity documents. This represents substantial contribution to theory, being the first research to use the repertory grid technique to elicit from experts, their mental constructs used to evaluate credibility of different types of identity documents reviewed in the course of opening new accounts. The research identified twenty-one characteristics, different ones of which are present on different types of identity documents. Expert evaluations of these documents in different scenarios suggest that visual characteristics are most important for a physical document, while authenticated personal data are most important for a digital document. ^
Resumo:
Materials known as Mn+1AXn phases, where n is 1, 2, or 3, and M represents an early transition metal, A an A-group element, and X is either Carbon and/or Nitrogen [1], are fast becoming technologically important materials due to the interesting combination of unique properties. However, a lot of important information about the high temperature and high pressure behavior of many of these compounds is still missing, which needs to be determined systematically. ^ In this dissertation the synthesis of M2AC (M = Ti, V, Cr, Nb, Zr) and A = (Al, Sn, S) compounds by arc melting, vacuum sintering and piston cylinder synthesis is presented along with the synthesis of Zr 2SC, which has been synthesized for first time in bulk form, by piston cylinder technique. The microstructural analysis by electron microscopy and phase analysis by x-ray diffraction is presented next. Finally, a critical analysis of the behavior of these compounds under the application of extreme pressure (as high as 50 GPa) and temperature (≈ 1000°C) is presented. ^ The high pressure studies, up to 50 GPa, showed that these compounds were structurally intact and their bulk moduli ranged from 140 to 190 GPa. The high temperature studies in the inert atmosphere showed that the M 2SnC compounds were unstable above 650°C and the expansion along the a-axis was higher than that along the c-axis, unlike the other phases. M2SC compounds on the other hand showed negligible difference in the thermal expansion along the two axes. The oxidation study revealed that Ti2AC (Al, S) compounds had highest resistance to oxidation while the M2SnC compounds had the least. Furthermore, from the oxidation study of these compounds, which were short time oxidation experiments, it was found that all of these compounds oxidized to their respective binary oxides. ^
Resumo:
In broad terms — including a thief's use of existing credit card, bank, or other accounts — the number of identity fraud victims in the United States ranges 9-10 million per year, or roughly 4% of the US adult population. The average annual theft per stolen identity was estimated at $6,383 in 2006, up approximately 22% from $5,248 in 2003; an increase in estimated total theft from $53.2 billion in 2003 to $56.6 billion in 2006. About three million Americans each year fall victim to the worst kind of identity fraud: new account fraud. Names, Social Security numbers, dates of birth, and other data are acquired fraudulently from the issuing organization, or from the victim then these data are used to create fraudulent identity documents. In turn, these are presented to other organizations as evidence of identity, used to open new lines of credit, secure loans, “flip” property, or otherwise turn a profit in a victim's name. This is much more time consuming — and typically more costly — to repair than fraudulent use of existing accounts. This research borrows from well-established theoretical backgrounds, in an effort to answer the question – what is it that makes identity documents credible? Most importantly, identification of the components of credibility draws upon personal construct psychology, the underpinning for the repertory grid technique, a form of structured interviewing that arrives at a description of the interviewee’s constructs on a given topic, such as credibility of identity documents. This represents substantial contribution to theory, being the first research to use the repertory grid technique to elicit from experts, their mental constructs used to evaluate credibility of different types of identity documents reviewed in the course of opening new accounts. The research identified twenty-one characteristics, different ones of which are present on different types of identity documents. Expert evaluations of these documents in different scenarios suggest that visual characteristics are most important for a physical document, while authenticated personal data are most important for a digital document.
Resumo:
This dissertation consists of three distinct components: (1) “Double Rainbow,” a notated composition for an acoustic ensemble of 10 instruments, ca. 36 minutes. (2) “Appalachiana”, a fixed-media composition for electro-acoustic music and video, ca. 30 minutes, and (3) “'The Invisible Mass': Exploring Compositional Technique in Alfred Schnittke’s Second Symphony”, an analytical article.
(1) Double Rainbow is a ca. 36 minute composition in four movements scored for 10 instruments: flute, Bb clarinet (doubling on bass clarinet), tenor saxophone (doubling on alto saxophone), french horn, percussion (glockenspiel, vibraphone, wood block, 3 toms, snare drum, bass drum, suspended cymbal), piano, violin, viola, cello, and double bass. Each of the four movements of the piece explore their own distinct character and set of compositional goals. The piece is presented as a musical score and as a recording, which was extensively treated in post-production.
(2) Appalachiana, is a ca. 30 minute fixed-media composition for music and video. The musical component was created as a vehicle to showcase several approaches to electro-acoustic music composition –fft re-synthesis for time manipulation effects, the use of a custom-built software instrument which implements generative approaches to creating rhythm and pitch patterns, using a recording of rain to create rhythmic triggers for software instruments, and recording additional components with acoustic instruments. The video component transforms footage of natural landscapes filmed at several locations in North Carolina, Virginia, and West Virginia into a surreal narrative using a variety of color, lighting, distortion, and time-manipulation video effects.
(3) “‘The Invisible Mass:’ Exploring Compositional Technique in Alfred Schnittke’s Second Symphony” is an analytical article that focuses on Alfred Schnittke’s compositional technique as evidenced in the construction of his Second Symphony and discussed by the composer in a number of previously untranslated articles and interviews. Though this symphony is pivotal in the composer’s oeuvre, there are currently no scholarly articles that offer in-depth analyses of the piece. The article combines analyses of the harmony, form, and orchestration in the Second Symphony with relevant quotations from the composer, some from published and translated sources and others newly translated by the author from research at the Russian State Library in St. Petersburg. These offer a perspective on how Schnittke’s compositional technique combines systematic geometric design with keen musical intuition.
Resumo:
N-Heterocycles are ubiquitous in biologically active natural products and pharmaceuticals. Yet, new syntheses and modifications of N-heterocycles are continually of interest for the purposes of expanding chemical space, finding quicker synthetic routes, better pharmaceuticals, and even new handles for molecular labeling. There are several iterations of molecular labeling; the decision of where to place the label is as important as of which visualization technique to emphasize.
Piperidine and indole are two of the most widely distributed N-heterocycles and thus were targeted for synthesis, functionalization, and labeling. The major functionalization of these scaffolds should include a nitrogen atom, while the inclusion of other groups will expand the utility of the method. Towards this goal, ease of synthesis and elimination of step-wise transformations are of the utmost concern. Here, the concept of electrophilic amination can be utilized as a way of introducing complex secondary and tertiary amines with minimal operations.
Molecular tags should be on or adjacent to an N-heterocycle as they are normally the motifs implicated at the binding site of enzymes and receptors. The labeling techniques should be useful to a chemical biologist, but should also in theory be useful to the medical community. The two types of labeling that are of interest to a chemist and a physician would be positron emission tomography (PET) and magnetic resonance imaging (MRI).
Coincidentally, the 3-positions of both piperidine and indole are historically difficult to access and modify. However, using electrophilic amination techniques, 3-functionalized piperidines can be synthesized in good yields from unsaturated amines. In the same manner, 3-labeled piperidines can be obtained; the piperidines can either be labeled with an azide for biochemical research or an 18F for PET imaging research. The novel electrophiles, N-benzenesulfonyloxyamides, can be reacted with indole in one of two ways: 3-amidation or 1-amidomethylation, depending on the exact reaction conditions. Lastly, a novel, hyperpolarizable 15N2-labeled diazirine has been developed as an exogenous and versatile tag for use in magnetic resonance imaging.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Symbolic execution is a powerful program analysis technique, but it is very challenging to apply to programs built using event-driven frameworks, such as Android. The main reason is that the framework code itself is too complex to symbolically execute. The standard solution is to manually create a framework model that is simpler and more amenable to symbolic execution. However, developing and maintaining such a model by hand is difficult and error-prone. We claim that we can leverage program synthesis to introduce a high-degree of automation to the process of framework modeling. To support this thesis, we present three pieces of work. First, we introduced SymDroid, a symbolic executor for Android. While Android apps are written in Java, they are compiled to Dalvik bytecode format. Instead of analyzing an app’s Java source, which may not be available, or decompiling from Dalvik back to Java, which requires significant engineering effort and introduces yet another source of potential bugs in an analysis, SymDroid works directly on Dalvik bytecode. Second, we introduced Pasket, a new system that takes a first step toward automatically generating Java framework models to support symbolic execution. Pasket takes as input the framework API and tutorial programs that exercise the framework. From these artifacts and Pasket's internal knowledge of design patterns, Pasket synthesizes an executable framework model by instantiating design patterns, such that the behavior of a synthesized model on the tutorial programs matches that of the original framework. Lastly, in order to scale program synthesis to framework models, we devised adaptive concretization, a novel program synthesis algorithm that combines the best of the two major synthesis strategies: symbolic search, i.e., using SAT or SMT solvers, and explicit search, e.g., stochastic enumeration of possible solutions. Adaptive concretization parallelizes multiple sub-synthesis problems by partially concretizing highly influential unknowns in the original synthesis problem. Thanks to adaptive concretization, Pasket can generate a large-scale model, e.g., thousands lines of code. In addition, we have used an Android model synthesized by Pasket and found that the model is sufficient to allow SymDroid to execute a range of apps.
Resumo:
Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.
Resumo:
Les zéolithes étant des matériaux cristallins microporeux ont démontré leurs potentiels et leur polyvalence dans un nombre très important d’applications. Les propriétés uniques des zéolithes ont poussé les chercheurs à leur trouver constamment de nouvelles utilités pour tirer le meilleur parti de ces matériaux extraordinaires. Modifier les caractéristiques des zéolithes classiques ou les combiner en synergie avec d’autres matériaux se trouvent être deux approches viables pour trouver encore de nouvelles applications. Dans ce travail de doctorat, ces deux approches ont été utilisées séparément, premièrement avec la modification morphologique de la ZSM-12 et deuxièmement lors de la formation des matériaux de type coeur/coquille (silice mésoporeuses@silicalite-1). La ZSM-12 est une zéolithe à haute teneur en silice qui a récemment attiré beaucoup l’attention par ses performances supérieures dans les domaines de l’adsorption et de la catalyse. Afin de synthétiser la ZSM-12 avec une pureté élevée et une morphologie contrôlée, la cristallisation de la zéolithe ZSM-12 a été étudiée en détail en fonction des différents réactifs chimiques disponibles (agent directeur de structure, types de silicium et source d’aluminium) et des paramètres réactionnels (l’alcalinité, ratio entre Na, Al et eau). Les résultats présentés dans cette étude ont montré que, contrairement à l’utilisation du structurant organique TEAOH, en utilisant un autre structurant, le MTEAOH, ainsi que le Al(o-i-Pr)3, cela a permis la formation de monocristaux ZSM-12 monodisperses dans un temps plus court. L’alcalinité et la teneur en Na jouent également des rôles déterminants lors de ces synthèses. Les structures de types coeur/coquille avec une zéolithe polycristalline silicalite-1 en tant que coquille, entourant un coeur formé par une microsphère de silice mésoporeuse (tailles de particules de 1,5, 3 et 20-45 μm) ont été synthétisés soit sous forme pure ou chargée avec des espèces hôtes métalliques. Des techniques de nucléations de la zéolithe sur le noyau ont été utilisées pour faire croitre la coquille de façon fiable et arriver à former ces matériaux. C’est la qualité des produits finaux en termes de connectivité des réseaux poreux et d’intégrité de la coquille, qui permet d’obtenir une stéréosélectivité. Ceci a été étudié en faisant varier les paramètres de synthèse, par exemple, lors de prétraitements qui comprennent ; la modification de surface, la nucléation, la calcination et le nombre d’étapes secondaires de cristallisation hydrothermale. En fonction de la taille du noyau mésoporeux et des espèces hôtes incorporées, l’efficacité de la nucléation se révèle être influencée par la technique de modification de surface choisie. En effet, les microsphères de silice mésoporeuses contenant des espèces métalliques nécessitent un traitement supplémentaire de fonctionnalisation chimique sur leur surface externe avec des précurseurs tels que le (3-aminopropyl) triéthoxysilane (APTES), plutôt que d’utiliser une modification de surface avec des polymères ioniques. Nous avons également montré que, selon la taille du noyau, de deux à quatre traitements hydrothermaux rapides sont nécessaires pour envelopper totalement le noyau sans aucune agrégation et sans dissoudre le noyau. De tels matériaux avec une enveloppe de tamis moléculaire cristallin peuvent être utilisés dans une grande variété d’applications, en particulier pour de l’adsorption et de la catalyse stéréo-sélective. Ce type de matériaux a été étudié lors d’une série d’expériences sur l’adsorption sélective du glycérol provenant de biodiesel brut avec des compositions différentes et à des températures différentes. Les résultats obtenus ont été comparés à ceux utilisant des adsorbants classiques comme par exemple du gel de sphères de silice mésoporeux, des zéolithes classiques, silicalite-1, Si-BEA et ZSM-5(H+), sous forment de cristaux, ainsi que le mélange physique de ces matériaux références, à savoir un mélange silicalite-1 et le gel de silice sphères. Bien que le gel de sphères de silice mésoporeux ait montré une capacité d’adsorption de glycérol un peu plus élevée, l’étude a révélé que les adsorbants mésoporeux ont tendance à piéger une quantité importante de molécules plus volumineuses, telles que les « fatty acid methyl ester » (FAME), dans leur vaste réseau de pores. Cependant, dans l’adsorbant à porosité hiérarchisée, la fine couche de zéolite silicalite-1 microporeuse joue un rôle de membrane empêchant la diffusion des molécules de FAME dans les mésopores composant le noyau/coeur de l’adsorbant composite, tandis que le volume des mésopores du noyau permet l’adsorption du glycérol sous forme de multicouches. Finalement, cette caractéristique du matériau coeur/coquille a sensiblement amélioré les performances en termes de rendement de purification et de capacité d’adsorption, par rapport à d’autres adsorbants classiques, y compris le gel de silice mésoporeuse et les zéolithes.
Resumo:
A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.
Resumo:
Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.