999 resultados para spatial repitition
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.
Resumo:
In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates the predicted error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. In quantization phase, we used a modified SPIHT algorithm to achieve efficiency in memory requirements. The memory constraint plays a vital role in wireless and bandwidth-limited applications. A single reusable list is used instead of three continuously growing linked lists as in case of SPIHT. This method is error resilient. The performance is measured in terms of PSNR and memory requirements. The algorithm shows good compression performance and significant savings in memory. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This thesis contains three subject areas concerning particulate matter in urban area air quality: 1) Analysis of the measured concentrations of particulate matter mass concentrations in the Helsinki Metropolitan Area (HMA) in different locations in relation to traffic sources, and at different times of year and day. 2) The evolution of traffic exhaust originated particulate matter number concentrations and sizes in local street scale are studied by a combination of a dispersion model and an aerosol process model. 3) Some situations of high particulate matter concentrations are analysed with regard to their meteorological origins, especially temperature inversion situations, in the HMA and three other European cities. The prediction of the occurrence of meteorological conditions conducive to elevated particulate matter concentrations in the studied cities is examined. The performance of current numerical weather forecasting models in the case of air pollution episode situations is considered. The study of the ambient measurements revealed clear diurnal variation of the PM10 concentrations in the HMA measurement sites, irrespective of the year and the season of the year. The diurnal variation of local vehicular traffic flows seemed to have no substantial correlation with the PM2.5 concentrations, indicating that the PM10 concentrations were originated mainly from local vehicular traffic (direct emissions and suspension), while the PM2.5 concentrations were mostly of regionally and long-range transported origin. The modelling study of traffic exhaust dispersion and transformation showed that the number concentrations of particles originating from street traffic exhaust undergo a substantial change during the first tens of seconds after being emitted from the vehicle tailpipe. The dilution process was shown to dominate total number concentrations. Minimal effect of both condensation and coagulation was seen in the Aitken mode number concentrations. The included air pollution episodes were chosen on the basis of occurrence in either winter or spring, and having at least partly local origin. In the HMA, air pollution episodes were shown to be linked to predominantly stable atmospheric conditions with high atmospheric pressure and low wind speeds in conjunction with relatively low ambient temperatures. For the other European cities studied, the best meteorological predictors for the elevated concentrations of PM10 were shown to be temporal (hourly) evolutions of temperature inversions, stable atmospheric stability and in some cases, wind speed. Concerning the weather prediction during particulate matter related air pollution episodes, the use of the studied models were found to overpredict pollutant dispersion, leading to underprediction of pollutant concentration levels.
Resumo:
Plasma membranes regulate the influx and efflux of molecules across themselves and are also responsible for primary signal transduction between cells or within the same cell. Presence of lateral heterogeneity and the ability of reorganization are essential requirements for effective functioning of biomembranes. Lipid rafts are small, heterogeneous, dynamic domains enriched in glycosphingolipids, sphingomyelin and cholesterol, and profoundly influence membrane organization. Glycosphingolipids are inclined towards formation of liquid-ordered phases in membranes, both with and without cholesterol; they are therefore prime players in domain formation. Here, we discuss the role of glycosphingolipids in microdomain formation and their spatial organization within these rafts.
Resumo:
Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.
Resumo:
Herbivorous insects, their host plants and natural enemies form the largest and most species-rich communities on earth. But what forces structure such communities? Do they represent random collections of species, or are they assembled by given rules? To address these questions, food webs offer excellent tools. As a result of their versatile information content, such webs have become the focus of intensive research over the last few decades. In this thesis, I study herbivore-parasitoid food webs from a new perspective: I construct multiple, quantitative food webs in a spatially explicit setting, at two different scales. Focusing on food webs consisting of specialist herbivores and their natural enemies on the pedunculate oak, Quercus robur, I examine consistency in food web structure across space and time, and how landscape context affects this structure. As an important methodological development, I use DNA barcoding to resolve potential cryptic species in the food webs, and to examine their effect on food web structure. I find that DNA barcoding changes our perception of species identity for as many as a third of the individuals, by reducing misidentifications and by resolving several cryptic species. In terms of the variation detected in food web structure, I find surprising consistency in both space and time. From a spatial perspective, landscape context leaves no detectable imprint on food web structure, while species richness declines significantly with decreasing connectivity. From a temporal perspective, food web structure remains predictable from year to year, despite considerable species turnover in local communities. The rate of such turnover varies between guilds and species within guilds. The factors best explaining these observations are abundant and common species, which have a quantitatively dominant imprint on overall structure, and suffer the lowest turnover. By contrast, rare species with little impact on food web structure exhibit the highest turnover rates. These patterns reveal important limitations of modern metrics of quantitative food web structure. While they accurately describe the overall topology of the web and its most significant interactions, they are disproportionately affected by species with given traits, and insensitive to the specific identity of species. As rare species have been shown to be important for food web stability, metrics depicting quantitative food web structure should then not be used as the sole descriptors of communities in a changing world. To detect and resolve the versatile imprint of global environmental change, one should rather use these metrics as one tool among several.
Resumo:
Topics in Spatial Econometrics — With Applications to House Prices Spatial effects in data occur when geographical closeness of observations influences the relation between the observations. When two points on a map are close to each other, the observed values on a variable at those points tend to be similar. The further away the two points are from each other, the less similar the observed values tend to be. Recent technical developments, geographical information systems (GIS) and global positioning systems (GPS) have brought about a renewed interest in spatial matters. For instance, it is possible to observe the exact location of an observation and combine it with other characteristics. Spatial econometrics integrates spatial aspects into econometric models and analysis. The thesis concentrates mainly on methodological issues, but the findings are illustrated by empirical studies on house price data. The thesis consists of an introductory chapter and four essays. The introductory chapter presents an overview of topics and problems in spatial econometrics. It discusses spatial effects, spatial weights matrices, especially k-nearest neighbours weights matrices, and various spatial econometric models, as well as estimation methods and inference. Further, the problem of omitted variables, a few computational and empirical aspects, the bootstrap procedure and the spatial J-test are presented. In addition, a discussion on hedonic house price models is included. In the first essay a comparison is made between spatial econometrics and time series analysis. By restricting the attention to unilateral spatial autoregressive processes, it is shown that a unilateral spatial autoregression, which enjoys similar properties as an autoregression with time series, can be defined. By an empirical study on house price data the second essay shows that it is possible to form coordinate-based, spatially autoregressive variables, which are at least to some extent able to replace the spatial structure in a spatial econometric model. In the third essay a strategy for specifying a k-nearest neighbours weights matrix by applying the spatial J-test is suggested, studied and demonstrated. In the final fourth essay the properties of the asymptotic spatial J-test are further examined. A simulation study shows that the spatial J-test can be used for distinguishing between general spatial models with different k-nearest neighbours weights matrices. A bootstrap spatial J-test is suggested to correct the size of the asymptotic test in small samples.
Resumo:
The growth of characteristic length scales associated with dynamic heterogeneity in glass-forming liquids is investigated in an extensive computational study of a four-point, time-dependent structure factor defined from spatial correlations of mobility, for a model liquid for system sizes extending up to 351 232 particles, in constant-energy and constant-temperature ensembles. Our estimates for dynamic correlation lengths and susceptibilities are consistent with previous results from finite size scaling. We find scaling exponents that are inconsistent with predictions from inhomogeneous mode coupling theory and a recent simulation confirmation of these predictions.
Resumo:
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
Resumo:
Markov random fields (MRF) are popular in image processing applications to describe spatial dependencies between image units. Here, we take a look at the theory and the models of MRFs with an application to improve forest inventory estimates. Typically, autocorrelation between study units is a nuisance in statistical inference, but we take an advantage of the dependencies to smooth noisy measurements by borrowing information from the neighbouring units. We build a stochastic spatial model, which we estimate with a Markov chain Monte Carlo simulation method. The smooth values are validated against another data set increasing our confidence that the estimates are more accurate than the originals.
Resumo:
A simple technique involving the use of a rotating and a stationary diffuser has been developed to vary the spatial coherence of light from a He-Ne laser. Using this technique an experimental investigation of the dependence of rotation sensitivity of Lau fringes on the spatial coherence of the illuminating wavefield has been carried out. It is observed that (i) the rotation sensitivity of Lau fringes varies in a well-defined manner as a function of the spatial coherence of the light used; (ii) the extremely good rotation sensitivity of Lau fringes can be used to great advantage (compared to the conventional double slit method) in the measurement of the spatial coherence of a wavefield; (iii) Lau fringes are formed at various levels of spatial coherence and as such it appears that the Lau effect need not be associated with an incoherent optical field
Resumo:
A comparison of microsite occupancy and the spatial structure of regeneration in three areas of late-successional Norway spruce dominated forest. Pallas-Ylläs is understood to have been influenced only by small-scale disturbance; Dvina-Pinega has had sporadic larger-scale disturbances; Kazkim has been affected by fire. All spruce and birch trees with diameter at breast height (DBH) ?10 cm were mapped in five stands on 40 m x 400 m transects, and those with DBH < 10 cm on 2 or 4 m x 400 m subplots. Microsite type was inventoried at 1m intervals along the centre line and for each tree with DBH < 10 cm. At all study areas small seedlings (h < 0.3 m, DBH < 10 cm) preferentially occupied disturbed microsites. In contrast, spruce saplings (h ? 1.3 m, DBH <10 cm) at all study areas showed less, or no, preference. At Pallas-Ylläs spruce seedlings (h < 1.3 m, DBH < 10 cm) and saplings (h ? 1.3 m, DBH < 10 cm) exhibited spatial correlation at scales from 32-52 m. At Dvina-Pinega saplings of both spruce and birch exhibited spatial correlation at scales from 32-81 m. At Kazkim spatial correlation of seedlings and saplings of both species was exhibited over variable distances. No spatial cross-correlation was found between overstorey basal area (DBH ? 10 cm) and regeneration (h ? 1.3 m, DBH < 10 cm) at any study area. The results confirm the importance of disturbed microsites for seedling establishment, but suggest that undisturbed microsites may sometimes be more advantageous for long-term tree survival. The regeneration gap concept may not be useful in describing the regeneration dynamics of late-successional boreal forests.