972 resultados para solid sampling technique


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the feasibility of postmortem percutaneous needle biopsy (PNB) for obtaining pulmonary samples adequate for the study of pulmonary fat embolism (PFE). Samples of both lungs were obtained from 26 cadavers via two different methods: (i) PNB and (ii) the double-edged knife technique, the gold standard at our institute. After water storage and Sudan III staining, six forensic pathologists independently examined all samples for the presence and severity of PFE. The results were compared and analyzed in each case regarding the vitality of the PFE and its relationship to the cause of death. The results showed that PFE was almost identically diagnosed and graded on the samples obtained via both methods. The discrepancies between the two techniques did not affect the diagnoses of vitality or cause of death related to PFE. This study demonstrates the feasibility of the PNB sampling method for the diagnosis and interpretation of PFE in the postmortem setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state shear pulverization (SSSP) is a unique processing technique for mechanochemical modification of polymers, compatibilization of polymer blends, and exfoliation and dispersion of fillers in polymer nanocomposites. A systematic parametric study of the SSSP technique is conducted to elucidate the detailed mechanism of the process and establish the basis for a range of current and future operation scenarios. Using neat, single component polypropylene (PP) as the model material, we varied machine type, screw design, and feed rate to achieve a range of shear and compression applied to the material, which can be quantified through specific energy input (Ep). As a universal processing variable, Ep reflects the level of chain scission occurring in the material, which correlates well to the extent of the physical property changes of the processed PP. Additionally, we compared the operating cost estimates of SSSP and conventional twin screw extrusion to determine the practical viability of SSSP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this communication, solid-state/melt extrusion (SSME) is introduced as a novel technique that combines solid-state shear pulverization (SSSP) and conventional twin screw extrusion (TSE) in a single extrusion system. The morphology and property enhancements in a model linear low-density polyethylene/organically modified clay nanocomposite sample fabricated via SSME were compared to those fabricated via SSSP and TSE. The results show that SSME is capable of exfoliating and dispersing the nanofillers similarly to SSSP, while achieving a desirable output rate and producing extrudate similar in form to that from TSE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigates multiple processing parameters, includingpolymer type, filler type, processing technique, severity of SSSP (Solid-state shear pulverization)processing, and postprocessing, of SSSP. HDPE and LLDPE polymers with pristine clay and organo-clay samples are explored. Effects on crystallization, high-temperature behavior, mechanicalproperties, and gas barrier properties are examined. Thermal, mechanical, and morphological characterization is conducted to determine polymer/filler compatibility and superior processing methods for the polymer-clay nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Diagnosing arrhythmias by conventional Holter-ECG can be cumbersome because of artifacts, skin irritation and poor P-waves. In contrast, esophageal electrocardiography (eECG) is promising due to the anatomic relationship of the esophagus to the atria and its favorable bioelectric properties. Methods used: In an ambulant setting, we recorded eECGs from 10 volunteers with a novel, highly-miniaturized eECG recorder that is worn discretely behind the ear (1.5×1.8×5cm, 22grams). The device continuously records two eECG leads during 3 days with 500Hz sampling frequency and 24-bit resolution. Results: Mean ± SD recording time was 21.7±19.6 hours (max. 60 hours). Test persons were not limited in daily activities (e.g. eating, speaking) and only complained mild discomfort during probe insertion, which subsided later on. During 99.8% of time, the recorder acquired signals appropriate for further analysis. In unfiltered data, QRS complexes and P-waves were identifiable during >98% of time. P waves had higher amplitudes as compared to surface ECG (0.71 ± 0.42mV vs. 0.16 ± 0.03mV, p = 0.004). No complications occurred. Conclusion: Ambulatory eECG recording is safe, well tolerated and promising due to excellent P-wave detection, overcoming some limitations of conventional Holter ECG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polylactic acid (PLA) is a bio-derived, biodegradable polymer with a number of similar mechanical properties to commodity plastics like polyethylene (PE) and polyethylene terephthalate (PETE). There has recently been a great interest in using PLA to replace these typical petroleum-derived polymers because of the developing trend to use more sustainable materials and technologies. However, PLA¿s inherent slow crystallization behavior is not compatible with prototypical polymer processing techniques such as molding and extrusion, and in turn inhibits its widespread use in industrial applications. In order to make PLA into a commercially-viable material, there is a need to process the material in such a way that its tendency to form crystals is enhanced. The industry standard for producing PLA products is via twin screw extrusion (TSE), where polymer pellets are fed into a heated extruder, mixed at a temperature above its melting temperature, and molded into a desired shape. A relatively novel processing technique called solid-state shear pulverization (SSSP) processes the polymer in the solid state so that nucleation sites can develop and fast crystallization can occur. SSSP has also been found to enhance the mechanical properties of a material, but its powder output form is undesirable in industry. A new process called solid-state/melt extrusion (SSME), developed at Bucknell University, combines the TSE and SSSP processes in one instrument. This technique has proven to produce moldable polymer products with increased mechanical strength. This thesis first investigated the effects of the TSE, SSSP, and SSME polymer processing techniques on PLA. The study seeks to determine the process that yields products with the most enhanced thermal and mechanical properties. For characterization, percent crystallinity, crystallization half time, storage modulus, softening temperature, degradation temperature and molecular weight were analyzed for all samples. Through these characterization techniques, it was observed that SSME-processed PLA had enhanced properties relative to TSE- and SSSP-processed PLA. Because of the previous findings, an optimization study for SSME-processed PLA was conducted where throughput and screw design were varied. The optimization study determined PLA processed with a low flow rate and a moderate screw design in an SSME process produced a polymer product with the largest increase in thermal properties and a high retention of polymer structure relative to TSE-, SSSP-, and all other SSME-processed PLA. It was concluded that the SSSP part of processing scissions polymer chains, creating defects within the material, while the TSE part of processing allows these defects to be mixed thoroughly throughout the sample. The study showed that a proper SSME setup allows for both the increase in nucleation sites within the polymer and sufficient mixing, which in turn leads to the development of a large amount of crystals in a short period of time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autogenous iliac crest has long served as the gold standard for anterior lumbar arthrodesis although added morbidity results from the bone graft harvest. Therefore, femoral ring allograft, or cages, have been used to decrease the morbidity of iliac crest bone harvesting. More recently, an experimental study in the animal showed that harvesting local bone from the anterior vertebral body and replacing the void by a radio-opaque beta-tricalcium phosphate plug was a valid concept. However, such a concept precludes theoretically the use of posterior pedicle screw fixation. At one institution a consecutive series of 21 patients underwent single- or multiple-level circumferential lumbar fusion with anterior cages and posterior pedicle screws. All cages were filled with cancellous bone harvested from the adjacent vertebral body, and the vertebral body defect was filled with a beta-tricalcium phosphate plug. The indications for surgery were failed conservative treatment of a lumbar degenerative disc disease or spondylolisthesis. The purpose of this study, therefore, was to report on the surgical technique, operative feasibility, safety, benefits, and drawbacks of this technique with our primary clinical experience. An independent researcher reviewed all data that had been collected prospectively from the onset of the study. The average age of the patients was 39.9 (26-57) years. Bone grafts were successfully harvested from 28 vertebral bodies in all but one patient whose anterior procedure was aborted due to difficulty in freeing the left common iliac vein. This case was converted to a transforaminal interbody fusion (TLIF). There was no major vascular injury. Blood loss of the anterior procedure averaged 250 ml (50-350 ml). One tricalcium phosphate bone plug was broken during its insertion, and one endplate was broken because of wrong surgical technique, which did not affect the final outcome. One patient had a right lumbar plexopathy that was not related to this special technique. There was no retrograde ejaculation, infection or pseudoarthrosis. One patient experienced a deep venous thrombosis. At the last follow up (mean 28 months) all patients had a solid lumbar spine fusion. At the 6-month follow up, the pain as assessed on the visual analog scale (VAS) decreased from 6.9 to 4.5 (33% decrease), and the Oswestry disability index (ODI) reduced from 48.0 to 31.7 with a 34% reduction. However, at 2 years follow up there was a trend for increase in the ODI (35) and VAS (5). The data in this study suggest that harvesting a cylinder of autograft from the adjacent vertebral body is safe and efficient. Filling of the void defect with a beta-tricalcium phosphate plug does not preclude the use of posterior pedicle screw stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To make use of the isotope ratio of nonexchangeable hydrogen (δ2Hn (nonexchangeable)) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (Corg) and organic N (Norg) recovery of demineralized SOM concentrates was significantly increased (Corg recovery using existing techniques vs new demineralization method: 58% vs 78%; Norg recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ2Hn values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ2Hn analyses of SOM as a new tool in paleoclimatology or geospatial forensics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Periprosthetic joint infection (PJI) is the most severe complication, following joint arthroplasty. Identification of the causal microbial factor is of paramount importance for the successful treatment. PURPOSE The aim of this study is to compare the sonication fluid cultures derived from joint prosthetic components with the respective periprosthetic tissue cultures. METHODS Explanted prosthesis components for suspected infection were placed into a tank containing sterile Ringer's solution and sonicated for 1 minute at 40 kHz. Sonication fluid cultures were examined for 10 days, and the number and identity of any colony morphology was recorded. In addition, periprosthetic tissue specimens (>5) were collected and cultured according to standard practice. The duration of antimicrobial interruption interval before culture sampling was recorded. RESULTS Thirty-four patients composed the study group. Sonication fluid cultures were positive in 24 patients (70.5%). Sixteen of thirty four periprosthetic tissue cultures (47.1%) were considered positive, all revealing the same microbial species with the respective sonication fluid cultures: 3 tissue samples showed polymicrobial infection. All tissue cultures were also found positive by the sonication fluid culture. CONCLUSIONS Sonication fluid cultures represent a cheap, easy, accurate, and sensitive diagnostic modality demonstrating increased sensitivity compared to periprosthetic tissue cultures (70.5 versus 47.1%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing precise age-depth relationships of high-alpine ice cores is essential in order to deduce conclusive paleoclimatic information from these archives. Radiocarbon dating of carbonaceous aerosol particles incorporated in such glaciers is a promising tool to gain absolute ages, especially from the deepest parts where conventional methods are commonly inapplicable. In this study, we present a new validation for a published C-14 dating method for ice cores. Previously C-14-dated horizons of organic material from the Juvfonne ice patch in central southern Norway (61.676 degrees N, 8.354 degrees E) were used as reference dates for adjacent ice layers, which were C-14 dated based on their particulate organic carbon (POC) fraction. Multiple measurements were carried out on 3 sampling locations within the ice patch featuring modern to multimillennial ice. The ages obtained from the analyzed samples were in agreement with the given age estimates. In addition to previous validation work, this independent verification gives further confidence that the investigated method provides the actual age of the ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a technique for online compression of ECG signals using the Golomb-Rice encoding algorithm. This is facilitated by a novel time encoding asynchronous analog-to-digital converter targeted for low-power, implantable, long-term bio-medical sensing applications. In contrast to capturing the actual signal (voltage) values the asynchronous time encoder captures and encodes the time information at which predefined changes occur in the signal thereby minimizing the sensor's energy use and the number of bits we store to represent the information by not capturing unnecessary samples. The time encoder transforms the ECG signal data to pure time information that has a geometric distribution such that the Golomb-Rice encoding algorithm can be used to further compress the data. An overall online compression rate of about 6 times is achievable without the usual computations associated with most compression methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Firn microstructure is accurately characterized using images obtained from scanning electron microscopy (SEM). Visibly etched grain boundaries within images are used to create a skeleton outline of the microstructure. A pixel-counting utility is applied to the outline to determine grain area. Firn grain sizes calculated using the technique described here are compared to those calculated using the techniques of Cow (1969) and Gay and Weiss (1999) on samples of the same material, and are found to be substantially smaller. The differences in grain size between the techniques are attributed to sampling deficiencies (e.g. the inclusion of pore filler in the grain area) in earlier methods. The new technique offers the advantages of greater accuracy and the ability to determine individual components of the microstructure (grain and pore), which have important applications in ice-core analyses. The new method is validated by calculating activation energies of grain boundary diffusion using predicted values based on the ratio of grain-size measurements between the new and existing techniques. The resulting activation energy falls within the range of values previously reported for firn/ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present three methods for the distortion-free enhancement of THz signals measured by electro-optic sampling in zinc blende-type detector crystals, e.g., ZnTe or GaP. A technique commonly used in optically heterodyne-detected optical Kerr effect spectroscopy is introduced, which is based on two measurements at opposite optical biases near the zero transmission point in a crossed polarizer detection geometry. In contrast to other techniques for an undistorted THz signal enhancement, it also works in a balanced detection scheme and does not require an elaborate procedure for the reconstruction of the true signal as the two measured waveforms are simply subtracted to remove distortions. We study three different approaches for setting an optical bias using the Jones matrix formalism and discuss them also in the framework of optical heterodyne detection. We show that there is an optimal bias point in realistic situations where a small fraction of the probe light is scattered by optical components. The experimental demonstration will be given in the second part of this two-paper series [J. Opt. Soc. Am. B, doc. ID 204877 (2014, posted online)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.