705 resultados para skeletal maps
Resumo:
This study uses several measures derived from the error matrix for comparing two thematic maps generated with the same sample set. The reference map was generated with all the sample elements and the map set as the model was generated without the two points detected as influential by the analysis of local influence diagnostics. The data analyzed refer to the wheat productivity in an agricultural area of 13.55 ha considering a sampling grid of 50 x 50 m comprising 50 georeferenced sample elements. The comparison measures derived from the error matrix indicated that despite some similarity on the maps, they are different. The difference between the estimated production by the reference map and the actual production was of 350 kilograms. The same difference calculated with the mode map was of 50 kilograms, indicating that the study of influential points is of fundamental importance to obtain a more reliable estimative and use of measures obtained from the error matrix is a good option to make comparisons between thematic maps.
Resumo:
A study about the spatial variability of data of soil resistance to penetration (RSP) was conducted at layers 0.0-0.1 m, 0.1-0.2 m and 0.2-0.3 m depth, using the statistical methods in univariate forms, i.e., using traditional geostatistics, forming thematic maps by ordinary kriging for each layer of the study. It was analyzed the RSP in layer 0.2-0.3 m depth through a spatial linear model (SLM), which considered the layers 0.0-0.1 m and 0.1-0.2 m in depth as covariable, obtaining an estimation model and a thematic map by universal kriging. The thematic maps of the RSP at layer 0.2-0.3 m depth, constructed by both methods, were compared using measures of accuracy obtained from the construction of the matrix of errors and confusion matrix. There are similarities between the thematic maps. All maps showed that the RSP is higher in the north region.
Resumo:
ABSTRACT This study aimed to compare thematic maps of soybean yield for different sampling grids, using geostatistical methods (semivariance function and kriging). The analysis was performed with soybean yield data in t ha-1 in a commercial area with regular grids with distances between points of 25x25 m, 50x50 m, 75x75 m, 100x100 m, with 549, 188, 66 and 44 sampling points respectively; and data obtained by yield monitors. Optimized sampling schemes were also generated with the algorithm called Simulated Annealing, using maximization of the overall accuracy measure as a criterion for optimization. The results showed that sample size and sample density influenced the description of the spatial distribution of soybean yield. When the sample size was increased, there was an increased efficiency of thematic maps used to describe the spatial variability of soybean yield (higher values of accuracy indices and lower values for the sum of squared estimation error). In addition, more accurate maps were obtained, especially considering the optimized sample configurations with 188 and 549 sample points.
Resumo:
Objective We studied the effects of loss of ovarian function (ovariectomy) onmuscle mass of gastrocnemius and themRNA levels of IGF-1, atrogin-1, MuRF-1, andmyostatin in an experimental model of rheumatoid arthritis in rats. Methods We randomly allocated 24 female Wistar rats (9 weeks, 195.3±17.4 grams) into four groups: control (CT-Sham; n = 6); rheumatoid arthritis (RA; n = 6); ovariectomy without rheumatoid arthritis (OV; n = 6); ovariectomy with rheumatoid arthritis (RAOV; n = 6). We performed the ovariectomy (OV and RAOV) or Sham (CTSham or RA) procedures at the same time, fifteen days before the rheumatoid arthritis induction. The RA and RAOV groups were immunized and then were injected with Met- BSA in the tibiotarsal joint. After 15 days of intra-articular injections the animals were euthanized. We evaluated the external manifestations of rheumatoid arthritis (perimeter joint) as well as animal weight, and food intake throughout the study. We also analyzed the cross-sectional areas (CSA) of gastrocnemius muscle fibers in 200 fibers (H&E method). In the gastrocnemius muscle, we analyzed mRNA expression by quantitative real time PCR followed by the Livak method (ΔΔCT). Results The rheumatoid arthritis induced reduction in CSA of gastrocnemius muscle fibers. The RAOV group showed a lower CSA of gastrocnemius muscle fibers compared to RA and CT-Sham groups. Skeletal muscle IGF-1 mRNA increased in arthritics and ovariectomized rats. The increased IGF-1 mRNA was higher in OV groups than in the RA and RAOV groups. Antrogin-1 mRNA also increased in the gastrocnemius muscle of arthritic and ovariectomized rats. However, the increased atrogin-1 mRNA was higher in RAOV groups than in the RA and OV groups. Gastrocnemius muscle MuRF-1 mRNA increased in the OVand RAOVgroups, but not in the RA and Shamgroups. However, the RAOV group showed higher MuRF-1 mRNA than the OV group. The myostatin gene expression was similar in all groups. Conclusion Loss of ovarian function results in increased loss of skeletal musclerelated ubiquitin ligases atrogin-1 and MuRF-1 in arthritic rats.
Resumo:
The human skeleton is composed of bone and cartilage. The differentiation of bone and cartilage cells from their bone marrow progenitors is regulated by an intrinsic network of intracellular and extracellular signaling molecules. In addition, cells coordinate their differentiation and function through reciprocal cell‐to‐cell interactions. MicroRNAs (miRNAs) are small, single‐stranded RNA molecules that inhibit protein translation by binding to messenger RNAs (mRNAs). Recent evidence demonstrates the involvement of miRNAs in multiple biological processes. However, their role in skeletal development and bone remodeling is still poorly understood. The aim of this thesis was to elucidate miRNA‐mediated gene regulation in bone and cartilage cells, namely in osteoblasts, osteoclasts, chondrocytes and bone marrow adipocytes. Comparison of miRNA expression during osteogenic and chondrogenic differentiation of bone marrow‐derived mesenchymal stem cells (MSCs) revealed several miRNAs with substantial difference between bone and cartilage cells. These miRNAs were predicted to target genes essentially involved in MSC differentiation. Three miRNAs, miR‐96, miR‐124 and miR‐199a, showed marked upregulation upon osteogenic, chondrogenic or adipogenic differentiation. Based on functional studies, these miRNAs regulate gene expression in MSCs and may thereby play a role in the commitment and/or differentiation of MSCs. Characterization of miRNA expression during osteoclastogenesis of mouse bone marrow cells revealed a unique expression pattern for several miRNAs. Potential targets of the differentially expressed miRNAs included many molecules essentially involved in osteoclast differentiation. These results provide novel insights into the expression and function of miRNAs during the differentiation of bone and cartilage cells. This information may be useful for the development of novel stem cell‐based treatments for skeletal defects and diseases.
Resumo:
This study aims at standardizing the pre-incubation and incubation pH and temperature used in the metachromatic staining method of myofibrillar ATPase activity of myosin (mATPase) used for asses and mules. Twenty four donkeys and 10 mules, seven females and three males, were used in the study. From each animal, fragments from the Gluteus medius muscle were collected and percutaneous muscle biopsy was performed using a 6.0-mm Bergström-type needle. In addition to the metachromatic staining method of mATPase, the technique of nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) was also performed to confirm the histochemical data. The histochemical result of mATPase for acidic pre-incubation (pH=4.50) and alkaline incubation (pH=10.50), at a temperature of 37ºC, yielded the best differentiation of fibers stained with toluidine blue. Muscle fibers were identified according to the following colors: type I (oxidative, light blue), type IIA (oxidative-glycolytic, intermediate blue) and type IIX (glycolytic, dark blue). There are no reports in the literature regarding the characterization and distribution of different types of muscle fibers used by donkeys and mules when performing traction work, cargo transportation, endurance sports (horseback riding) and marching competitions. Therefore, this study is the first report on the standardization of the mATPase technique for donkeys and mules.
Resumo:
Skeletal tissue is constantly remodeled in a process where osteoclasts resorb old bone and osteoblasts form new bone. Balance in bone remodeling is related to age, gender and genetic factors, but also many skeletal diseases, such as osteoporosis and cancer-induced bone metastasis, cause imbalance in bone turnover and lead to decreased bone mass and increased fracture risk. Biochemical markers of bone turnover are surrogates for bone metabolism and may be used as indicators of the balance between bone resorption and formation. They are released during the remodeling process and can be conveniently and reliably measured from blood or urine by immunoassays. Most commonly used bone formation markers include N-terminal propeptides of type I collagen (PINP) and osteocalcin, whereas tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) and C-terminal cross-linked telopeptide of type I collagen (CTX) are common resorption markers. Of these, PINP has been, until recently, the only marker not commercially available for preclinical use. To date, widespread use of bone markers is still limited due to their unclear biological significance, variability, and insufficient evidence of their prognostic value to reflect long term changes. In this study, the feasibility of bone markers as predictors of drug efficacy in preclinical osteoporosis models was elucidated. A non-radioactive PINP immunoassay for preclinical use was characterized and validated. The levels of PINP, N-terminal mid-fragment of osteocalcin, TRACP 5b and CTX were studied in preclinical osteoporosis models and the results were compared with the results obtained by traditional analysis methods such as histology, densitometry and microscopy. Changes in all bone markers at early timepoints correlated strongly with the changes observed in bone mass and bone quality parameters at the end of the study. TRACP 5b correlated strongly with the osteoclast number and CTX correlated with the osteoclast activity in both in vitro and in vivo studies. The concept “resorption index” was applied to the relation of CTX/TRACP 5b to describe the mean osteoclast activity. The index showed more substantial changes than either of the markers alone in the preclinical osteoporosis models used in this study. PINP was strongly associated with bone formation whereas osteocalcin was associated with both bone formation and resorption. These results provide novel insight into the feasibility of PINP, osteocalcin, TRACP 5b and CTX as predictors of drug efficacy in preclinical osteoporosis models. The results support clinical findings which indicate that short-term changes of these markers reflect long-term responses in bone mass and quality. Furthermore, this information may be useful when considering cost-efficient and clinically predictive drug screening and development assays for mining new drug candidates for skeletal diseases.
Resumo:
A study on the spatial distribution of the major weeds in maize was carried out in 2007 and 2008 in a field located in Golegã (Ribatejo region, Portugal). The geo-referenced sampling focused on 150 points of a 10 x 10 m mesh covering an area of 1.5 ha, before herbicide application and before harvest. In the first year, 40 species (21 botanical families) were identified at seedling stage and only 22 during the last observation. The difference in species richness can be attributed to maize monoculture favouring reduction in species number. Three of the most representative species were selected for the spatial distribution analysis: Solanum nigrum, Chenopodium album and Echinochloa crus-galli. The three species showed an aggregated spatial pattern and spatial stability over both years, although the herbicide effect is evident in the distribution of some of them in the space. These results could be taken into account when planning site-specific treatments in maize.
Resumo:
The purpose of this thesis is to find out whether all the peer to peer lenders are unworthy of credit and also if there are single qualities or combinations of qualities that determine the probability of default of a person or group of people. Distinguishing qualities are searched with self-organizing maps (SOM). Qualities and groups of people found by the self-organizing map are then compared to the average. The comparison is carried out by looking how big proportion of borrowers meeting the criteria is two months or more behind with their payments. Research data used is collected by an Estonian peer to peer lending company during the years of 2011-2014. Data consists of peer to peer borrowers and information gathered from them.
Resumo:
Human skinned muscle fibers were used to investigate the effects of bovine serum albumin (BSA) on the tension/pCa relationship and on the functional properties of the Ca2+-release channel of the sarcoplasmic reticulum (SR). In both fast- and slow-type fibers, identified by their tension response to pSr 5.0, BSA (0.7-15 µM) had no effect on the Ca2+ affinity of the contractile proteins and elicited no tension per se in Ca2+-loaded fibers. In contrast, BSA (>1.0 µM) potentiated the caffeine-induced tension in Ca2+-loaded fibers, this effect being more intense in slow-type fibers. Thus, BSA reduced the threshold caffeine concentration required for eliciting detectable tension, and increased the amplitude, the rate of rise and the area under the curve of caffeine-induced tension. BSA also potentiated the tension elicited in Ca2+-loaded fibers by low-Mgv solutions containing 1.0 mM free ATP. These results suggest that BSA modulates the response of the human skeletal muscle SR Ca2+-release channel to activators such as caffeine and ATP.
Resumo:
This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL). Males (4 weeks old) from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group). CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks) caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A), were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05). Total liver protein decreased below the level seen in either pair-fed animals (group P) or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05), whereas gastrocnemius muscle protein was higher than the values normally described for control (C) animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05). Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05). This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05). Brown adipose tissue (BAT) cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05), was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05). The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.
Resumo:
Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes (MLN)) and skeletal muscles (gastrocnemius and soleus) of adrenodemedullated (ADM) rats. The results were compared with those obtained for sham-operated rats. TBARs content was reduced by adrenodemedullation in the lymphoid organs (MLN (28%), thymus (40%) and spleen (42%)) and gastrocnemius muscle (67%). G6PDh activity was enhanced in the MLN (69%) and reduced in the spleen (28%) and soleus muscle (75%). CS activity was reduced in all tissues (MLN (75%), spleen (71%), gastrocnemius (61%) and soleus (43%)), except in the thymus which displayed an increment of 56%. Cu/Zn-SOD activity was increased in the MLN (126%), thymus (223%), spleen (80%) and gastrocnemius muscle (360%) and was reduced in the soleus muscle (31%). Mn-SOD activity was decreased in the MLN (67%) and spleen (26%) and increased in the thymus (142%), whereas catalase activity was reduced in the MLN (76%), thymus (54%) and soleus muscle (47%). It is particularly noteworthy that in ADM rats the activity of glutathione peroxidase was not detectable by the method used. These data are consistent with the possibility that epinephrine might play a role in the oxidative stress of the lymphoid organs. Whether this fact represents an important mechanism for the establishment of impaired immune function during stress remains to be elucidated.
Resumo:
Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.