998 resultados para self-clean
Resumo:
This study investigated the association between outdoor work and response to a behavioural skin cancer early detection intervention among men 50 years or older. Overall, 495 men currently working in outdoor, mixed or indoor occupations were randomised to a video-based intervention or control group. At 7 months post intervention, indoor workers reported the lowest proportion of whole-body skin self-examination (wbSSE; 20%). However, at 13 months mixed workers engaged more commonly in wbSSE (36%) compared to indoor (31%) and outdoor (32%) workers. In adjusted analysis, the uptake of early detection behaviours during the trial did not differ between men working in different settings. Outdoor workers compared to men in indoor or mixed work settings were similar in their response to an intervention encouraging uptake of secondary skin cancer prevention behaviours during this intervention trial.
Resumo:
BACKGROUND: Effective management of chronic diseases such as prostate cancer is important. Research suggests a tendency to use self-care treatment options such as over-the-counter (OTC) complementary medications among prostate cancer patients. The current trend in patient-driven recording of health data in an online Personal Health Record (PHR) presents an opportunity to develop new data-driven approaches for improving prostate cancer patient care. However, the ability of current online solutions to share patients' data for better decision support is limited. An informatics approach may improve online sharing of self-care interventions among these patients. It can also provide better evidence to support decisions made during their self-managed care. AIMS: To identify requirements for an online system and describe a new case-based reasoning (CBR) method for improving self-care of advanced prostate cancer patients in an online PHR environment. METHOD: A non-identifying online survey was conducted to understand self-care patterns among prostate cancer patients and to identify requirements for an online information system. The pilot study was carried out between August 2010 and December 2010. A case-base of 52 patients was developed. RESULTS: The data analysis showed self-care patterns among the prostate cancer patients. Selenium (55%) was the common complementary supplement used by the patients. Paracetamol (about 45%) was the commonly used OTC by the patients. CONCLUSION: The results of this study specified requirements for an online case-based reasoning information system. The outcomes of this study are being incorporated in design of the proposed Artificial Intelligence (Al) driven patient journey browser system. A basic version of the proposed system is currently being considered for implementation.
Resumo:
The focus of governments on increasing active travel has motivated renewed interest in cycling safety. Bicyclists are up to 20 times more likely to be involved in serious injury crashes than drivers so understanding the relationship among factors in bicyclist crash risk is critically important for identifying effective policy tools, for informing bicycle infrastructure investments, and for identifying high risk bicycling contexts. This study aims to better understand the complex relationships between bicyclist self reported injuries resulting from crashes (e.g. hitting a car) and non-crashes (e.g. spraining an ankle) and perceived risk of cycling as a function of cyclist exposure, rider conspicuity, riding environment, rider risk aversion, and rider ability. Self reported data from 2,500 Queensland cyclists are used to estimate a series of seemingly unrelated regressions to examine the relationships among factors. The major findings suggest that perceived risk does not appear to influence injury rates, nor do injury rates influence perceived risks of cycling. Riders who perceive cycling as risky tend not to be commuters, do not engage in group riding, tend to always wear mandatory helmets and front lights, and lower their perception of risk by increasing days per week of riding and by increasing riding proportion on bicycle paths. Riders who always wear helmets have lower crash injury risk. Increasing the number of days per week riding tends to decrease both crash injury and non crash injury risk (e.g. a sprain). Further work is needed to replicate some of the findings in this study.
Resumo:
Self-efficacy has two cognitive components, efficacy expectations and outcome expectations, and their influence on behavior change is synergistic. Efficacy expectation is effected by four main sources of information provided by direct and indirect experiences. The four sources of information are performance accomplishments, vicarious experience, verbal persuasion and self-appraisal. How to measure and develop interventions is an important issue at present. This article clearly analyzes the relationship between variables of the self-efficacy model and explains the implementation of self-efficacy enhancing interventions and instruments in order to test the model. Through the process of the use of theory and feasibility in clinical practice, it is expected that professional medical care personnel should firstly familiarize themselves with the self-efficiency model and concept, and then flexibly promote it in professional fields clinical practice, chronic disease care and health promotion.
Resumo:
This research paper explores the impact product personalisation has upon product attachment and aims to develop a deeper understanding of why, how and if consumers choose to do so. The current research in this field is mainly based on attachment theories and is predominantly product specific. This paper researches the link between product attachment and personalisation through in-depth, semi-structured interviews, where the data has been thematically analysed and broken down into three themes, and nine sub-themes. It was found that participants did become more attached to products once they were personalised and the reasons why this occurred varied. The most common reasons that led to personalisation were functionality and usability, the expression of personality through a product and the complexity of personalisation. The reasons why participants felt connected to their products included strong emotions/memories, the amount of time and effort invested into the personalisation, a sense of achievement. Reasons behind the desire for personalisation included co-designing, expression of uniqueness/individualism and having choice for personalisation. Through theme and inter-theme relationships, many correlations were formed, which created the basis for design recommendations. These recommendations demonstrate how a designer could implement the emotions and reasoning for personalisation into the design process.
Resumo:
This paper describes a qualitative study that investigated young adolescents’ self-constructions within the context of online (email) communication. Drawing from dialogical perspectives of self as multiply-situated and complex phenomena, the study focused on the everyday narratives of individual young adolescents interpreted as different “I” voices. With the assumption that computer mediation offers cultural relevance and empowerment to young adolescents, techniques of personal journal writing were used in combination with email as an alternative to face-to-face methods. Twelve participants aged 10 to 14 years were recruited online and by word-of-mouth with an invitation to write freely about their lives over a six month period in a participant-led email journal project. The role of the researcher was to develop a supportive voice of listener/responder that was intended to facilitate the emergence of participants’ own ‘self’ voices within an interactive space for relatively autonomous self-expression. Data as email texts were analysed using a close listening method that synchronised with the theory by revealing multi-layered patterns and shifts of voices in order to give a nuanced understanding of participants’ self and other evaluations. The paper shows that narrative methods used online and in concert with dialogical concepts have potential to heighten self-reflection and strengthen agency as a means to access rich and nuanced data from young adolescent individuals. The study’s findings contribute to a growing interest in the use of dialogical concepts to explore the ways people engage in active meaning-making while embedded in their specific social and cultural environments.
Resumo:
Whole-body computer control interfaces present new opportunities to engage children with games for learning. Stomp is a suite of educational games that use such a technology, allowing young children to use their whole body to interact with a digital environment projected on the floor. To maximise the effectiveness of this technology, tenets of self-determination theory (SDT) are applied to the design of Stomp experiences. By meeting user needs for competence, autonomy, and relatedness our aim is to increase children's engagement with the Stomp learning platform. Analysis of Stomp's design suggests that these tenets are met. Observations from a case study of Stomp being used by young children show that they were highly engaged and motivated by Stomp. This analysis demonstrates that continued application of SDT to Stomp will further enhance user engagement. It also is suggested that SDT, when applied more widely to other whole-body multi-user interfaces, could instil similar positive effects.
Resumo:
Objectives: To develop and test preliminary reliability and validity of a Self-Efficacy Questionnaire for Chinese Family Caregivers (SEQCFC). Methods: A cross-sectional survey of 196 family caregivers (CGs) of people with dementia (CGs) was conducted to determine the factor structure of a SEQCFC of people with dementia. Following factor analyses, preliminary testing was performed, including internal consistency, 4-week test retest reliability, and construct and convergent validity. Results: Factor analyses with direct oblimin rotation were performed. Eight items were removed and five subscales(selfefficacy for gathering information about treatment, symptoms and health care; obtaining support; responding to behaviour disturbances; managing household, personal and medical care; and managing distress associated with caregiving) were identified. The Cronbach’s alpha coefficients for the whole scale and for each subscale were all over 0.80. The 4-week testretest reliabilities for the whole scale and for each subscale ranged from 0.64 to 0.85. The convergent validity was acceptable. Conclusions: Evidence for the preliminary testing of the SEQCFC was encouraging. A future follow-up study using confirmatory factor analysis with a new sample from different recruitment centres in Shanghai will be conducted. Future psychometric property testings of the questionnaire will be required for CGs from other regions of mainland China.
Resumo:
The objective of this paper was to explore experiences of ‘immediate-uptake’ (intermediate licensure at age 17-18 years, n = 928) and ‘delayed-uptake’ (intermediate licensure at age 19-20 years, n = 158) driver’s licence holders in the Australian state of Queensland. In Queensland, the graduated driver licence program applies to all novices irrespective of age. Drivers who obtained a Provisional 1 (intermediate) (P1) licence completed a survey exploring pre-Licence and Learner experiences, including the Behaviour of Young Novice Drivers Scale (BYNDS). Six months later, 351 drivers from this sample (n = 300 immediate-uptake) completed a survey exploring P1 driving. Delayed-uptake Learners reported significantly more difficulty gaining driving practice, which appeared to be associated with significantly greater engagement in unsupervised driving during the Learner period. Whilst a larger proportion of delayed-uptake novices, particularly males, reported the use of more active punishment avoidance strategies (avoiding Police, talking themselves out of a ticket) in the P1 phase, there was no significant difference in the BYNDS scores in the Learner and P1 phases according to licence-uptake category. Delayed-uptake novices report more difficulty meeting GDL requirements and place themselves at increased risk by driving unsupervised during the Learner licence phase. Additional efforts such as mentoring programs which can support the delayed-uptake Learner in meeting their GDL obligations merit further consideration to allow this novice group to gain the full benefits of the GDL program and to reduce their risk of harm in the short-term.
Resumo:
Background: There are strong logical reasons why energy expended in metabolism should influence the energy acquired in food-intake behavior. However, the relation has never been established, and it is not known why certain people experience hunger in the presence of large amounts of body energy. Objective: We investigated the effect of the resting metabolic rate (RMR) on objective measures of whole-day food intake and hunger. Design: We carried out a 12-wk intervention that involved 41 overweight and obese men and women [mean ± SD age: 43.1 ± 7.5 y; BMI (in kg/m2): 30.7 ± 3.9] who were tested under conditions of physical activity (sedentary or active) and dietary energy density (17 or 10 kJ/g). RMR, daily energy intake, meal size, and hunger were assessed within the same day and across each condition. Results: We obtained evidence that RMR is correlated with meal size and daily energy intake in overweight and obese individuals. Participants with high RMRs showed increased levels of hunger across the day (P < 0.0001) and greater food intake (P < 0.00001) than did individuals with lower RMRs. These effects were independent of sex and food energy density. The change in RMR was also related to energy intake (P < 0.0001). Conclusions: We propose that RMR (largely determined by fat-free mass) may be a marker of energy intake and could represent a physiologic signal for hunger. These results may have implications for additional research possibilities in appetite, energy homeostasis, and obesity. This trial was registered under international standard identification for controlled trials as ISRCTN47291569.
Resumo:
The Clean Development Mechanism (CDM) has been praised for its ingenuity in mobilising finance to implement sustainable development practices in non-industrialised countries (known as Non-Annex 1 parties under the Kyoto Protocol). During the first commitment period of the Kyoto Protocol (2008-2012), a large number of clean development mechanism projects have been registered with the CDM board. In addition to the large number of registered CDM projects, there are significant numbers of proposed projects stalled in implementation due to the cumbersome and lengthy CDM approval process. Despite this regulatory criticism it is recognised that the role performed by the CDM is essential for achieving a significant reduction in global green house gas emissions. This is because the CDM funds sustainable development in countries that lack capacity to do so on their own. It is anticipated that some form of CDM instrument will continue post the 2012 timeframe and that reform of the mechanism will be focused around making the mechanism’s approval and implementation processes faster and more efficient.
Resumo:
Objective: To examine the association between individual- and neighborhood-level disadvantage and self-reported arthritis. Methods: We used data from a population-based cross-sectional study conducted in 2007 among 10,757 men and women ages 40–65 years, selected from 200 neighborhoods in Brisbane, Queensland, Australia using a stratified 2-stage cluster design. Data were collected using a mail survey (68.5% response). Neighborhood disadvantage was measured using a census-based composite index, and individual disadvantage was measured using self-reported education, household income, and occupation. Arthritis was indicated by self-report. Data were analyzed using multilevel modeling. Results: The overall rate of self-reported arthritis was 23% (95% confidence interval [95% CI] 22–24). After adjustment for sociodemographic factors, arthritis prevalence was greatest for women (odds ratio [OR] 1.5, 95% CI 1.4–1.7) and in those ages 60–65 years (OR 4.4, 95% CI 3.7–5.2), those with a diploma/associate diploma (OR 1.3, 95% CI 1.1–1.6), those who were permanently unable to work (OR 4.0, 95% CI 3.1–5.3), and those with a household income <$25,999 (OR 2.1, 95% CI 1.7–2.6). Independent of individual-level factors, residents of the most disadvantaged neighborhoods were 42% (OR 1.4, 95% CI 1.2–1.7) more likely than those in the least disadvantaged neighborhoods to self-report arthritis. Cross-level interactions between neighborhood disadvantage and education, occupation, and household income were not significant. Conclusion: Arthritis prevalence is greater in more socially disadvantaged neighborhoods. These are the first multilevel data to examine the relationship between individual- and neighborhood-level disadvantage upon arthritis and have important implications for policy, health promotion, and other intervention strategies designed to reduce the rates of arthritis, indicating that intervention efforts may need to focus on both people and places.
Resumo:
Modern mobile computing devices are versatile, but bring the burden of constant settings adjustment according to the current conditions of the environment. While until today, this task has to be accomplished by the human user, the variety of sensors usually deployed in such a handset provides enough data for autonomous self-configuration by a learning, adaptive system. However, this data is not fully available at certain points in time, or can contain false values. Handling potentially incomplete sensor data to detect context changes without a semantic layer represents a scientific challenge which we address with our approach. A novel machine learning technique is presented - the Missing-Values-SOM - which solves this problem by predicting setting adjustments based on context information. Our method is centered around a self-organizing map, extending it to provide a means of handling missing values. We demonstrate the performance of our approach on mobile context snapshots, as well as on classical machine learning datasets.