940 resultados para seasonal changes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available). Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche) weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model) characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we examined three aspects pertaining to adrenocortical responsiveness in free-ranging Australian freshwater crocodiles (Crocodylus johnstoni). First, we examined the ability of freshwater crocodiles to produce corticosterone in response to a typical capture-stress protocol. A second objective addressed the relationship between capture stress, plasma glucose and corticosterone. Next we examined if variation in basal and capture-stress-induced levels of plasma corticosterone was linked to ecological or demographic factors for individuals in this free-ranging population. Blood samples obtained on three field trips were taken from a cross-sectional sample of the population. Crocodiles were bled once during four time categories at 0, 0. 5, 6, and 10 h post-capture. Plasma corticosterone increased significantly with time post-capture. Plasma glucose also significantly increased with duration of capture-stress and exhibited a positive and significant relationship with plasma corticosterone. Significant variation in basal or stress induced levels of corticosterone in crocodiles was not associated with any ecological or demographic factors including sex, age class or the year of capture that the crocodiles were sampled from. However, three immature males had basal levels of plasma corticosterone greater than 2 standard deviations above the mean. While crocodiles exhibited a pronounced, adrenocortical and hyperglycaemic response to capture stress, limited variation in adrenocortical responsiveness due to ecological and demographic factors was not evident. This feature could arise in part because this population was sampled during a period of environmental benigness. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of short-term fasting and prolonged fasting during aestivation on the morphology of the proximal small intestine and associated organs were investigated in the green-striped burrowing frog, Cyclorana alboguttata (Anura: Hylidae). Animals were fasted for 1 week while active or for 3-9 months during aestivation. Short-duration fasting (1 week) had little effect on the morphology of the small intestine, whilst prolonged fasting during aestivation induced marked enteropathy including reductions in intestinal mass, length and diameter, longitudinal fold height and tunica muscularis thickness. Enterocyte morphology was also affected markedly by prolonged fasting: enterocyte cross-sectional area and microvillous height were reduced during aestivation, intercellular spaces were visibly reduced and the prevalence of lymphocytes amongst enterocytes was increased. Mitochondria and nuclei were also affected by 9 months of aestivation with major disruptions to mitochondrial cristae and increased clumping of nuclear material and increased infolding of the nuclear envelope. The present study demonstrates that the intestine of an aestivating frog responds to prolonged food deprivation during aestivation by reducing in size, presumably to reduce the energy expenditure of the organ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During aestivation, the gut of the green-striped burrowing frog, Cyclorana alboguttata undergoes significant morphological down-regulation. Despite the potential impact such changes might have on the re-feeding efficiency of these animals following aestivation, they appear to be as efficient at digesting their first meals as active, non-aestivating animals. Such efficiency might come about by the rapid restoration of intestinal morphology with both arousal from aestivation and the initial stages of re-feeding. Consequently, this study sought to determine what morphological changes to the intestine accompany arousal and re-feeding following 3 months of aestivation. Arousal from aestivation alone had a marked impact on many morphological parameters, including small and large intestine masses, small intestinal length, LF heights, enterocyte cross-sectional area and microvilli height and density. In addition, the onset of re-feeding was correlated with an immediate reversal of many morphological parameters affected by 3 months of aestivation. Those parameters that had not returned to control levels within 36 h of feeding generally had returned to control values by the completion of digestion (i.e. defecation of the meal). Re-feeding was also associated with several changes in enterocyte morphology including the incorporation in intracytoplasmic lipid droplets and the return of enterocyte nuclear material to the 'active' euchromatin state: In conclusion, morphological changes to the gut of aestivating frogs which occur during aestivation are transitory and rapidly reversible with both arousal from aestivation and re-feeding. The proximate causes behind these transitions and their functional significance are discussed. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il presente lavoro ha lo scopo di comprendere i processi sottesi ai pattern di coesistenza tra le specie di invertebrati sorgentizi, distinguendo tra dinamiche stocastiche e deterministiche. Le sorgenti sono ecosistemi complessi e alcune loro caratteristiche (ad esempio l’insularità, la stabilità termica, la struttura ecotonale “a mosaico”, la frequente presenza di specie rare ed endemiche, o l’elevata diversità in taxa) le rendono laboratori naturali utili allo studio dei processi ecologici, tra cui i processi di assembly. Al fine di studiare queste dinamiche è necessario un approccio multi-scala, per questo motivi sono state prese in considerazione tre scale spaziali. A scala locale è stato compiuto un campionamento stagionale su sette sorgenti (quattro temporanee e tre permanenti) del Monte Prinzera, un affioramento ofiolitico vicino alla città di Parma. In questa area sono stati valutati l’efficacia e l’impatto ambientale di diversi metodi di campionamento e sono stati analizzati i drivers ecologici che influenzano le comunità. A scala più ampia sono state campionate per due volte 15 sorgenti della regione Emilia Romagna, al fine di identificare il ruolo della dispersione e la possibile presenza di un effetto di niche-filtering. A scala continentale sono state raccolte informazioni di letteratura riguardanti sorgenti dell’area Paleartica occidentale, e sono stati studiati i pattern biogeografici e l’influenza dei fattori climatici sulle comunità. Sono stati presi in considerazione differenti taxa di invertebrati (macroinvertebrati, ostracodi, acari acquatici e copepodi), scegliendo tra quelli che si prestavano meglio allo studio dei diversi processi in base alle loro caratteristiche biologiche e all’approfondimento tassonomico raggiungibile. I campionamenti biologici in sorgente sono caratterizzati da diversi problemi metodologici e possono causare impatti sugli ambienti. In questo lavoro sono stati paragonati due diversi metodi: l’utilizzo del retino con un approccio multi-habitat proporzionale e l’uso combinato di trappole e lavaggio di campioni di vegetazione. Il retino fornisce dati più accurati e completi, ma anche significativi disturbi sulle componenti biotiche e abiotiche delle sorgenti. Questo metodo è quindi raccomandato solo se il campionamento ha come scopo un’approfondita analisi della biodiversità. D’altra parte l’uso delle trappole e il lavaggio della vegetazione sono metodi affidabili che presentano minori impatti sull’ecosistema, quindi sono adatti a studi ecologici finalizzati all’analisi della struttura delle comunità. Questo lavoro ha confermato che i processi niche-based sono determinanti nello strutturare le comunità di ambienti sorgentizi, e che i driver ambientali spiegano una rilevante percentuale della variabilità delle comunità. Infatti le comunità di invertebrati del Monte Prinzera sono influenzate da fattori legati al chimismo delle acque, alla composizione e all’eterogeneità dell’habitat, all’idroperiodo e alle fluttuazioni della portata. Le sorgenti permanenti mostrano variazioni stagionali per quanto riguarda le concentrazioni dei principali ioni, mentre la conduttività, il pH e la temperatura dell’acqua sono più stabili. È probabile che sia la stabilità termica di questi ambienti a spiegare l’assenza di variazioni stagionali nella struttura delle comunità di macroinvertebrati. L’azione di niche-filtering delle sorgenti è stata analizzata tramite lo studio della diversità funzionale delle comunità di ostracodi dell’Emilia-Romagna. Le sorgenti ospitano più del 50% del pool di specie regionale, e numerose specie sono state rinvenute esclusivamente in questi habitat. Questo è il primo studio che analizza la diversità funzionale degli ostracodi, è stato quindi necessario stilare una lista di tratti funzionali. Analizzando il pool di specie regionale, la diversità funzionale nelle sorgenti non è significativamente diversa da quella misurata in comunità assemblate in maniera casuale. Le sorgenti non limitano quindi la diversità funzionale tra specie coesistenti, ma si può concludere che, data la soddisfazione delle esigenze ecologiche delle diverse specie, i processi di assembly in sorgente potrebbero essere influenzati da fattori stocastici come la dispersione, la speciazione e le estinzioni locali. In aggiunta, tutte le comunità studiate presentano pattern spaziali riconoscibili, rivelando una limitazione della dispersione tra le sorgenti, almeno per alcuni taxa. Il caratteristico isolamento delle sorgenti potrebbe essere la causa di questa limitazione, influenzando maggiormente i taxa a dispersione passiva rispetto a quelli a dispersione attiva. In ogni caso nelle comunità emiliano-romagnole i fattori spaziali spiegano solo una ridotta percentuale della variabilità biologica totale, mentre tutte le comunità risultano influenzate maggiormente dalle variabili ambientali. Il controllo ambientale è quindi prevalente rispetto a quello attuato dai fattori spaziali. Questo risultato dimostra che, nonostante le dinamiche stocastiche siano importanti in tutte le comunità studiate, a questa scala spaziale i fattori deterministici ricoprono un ruolo prevalente. I processi stocastici diventano più influenti invece nei climi aridi, dove il disturbo collegato ai frequenti eventi di disseccamento delle sorgenti provoca una dinamica source-sink tra le diverse comunità. Si è infatti notato che la variabilità spiegata dai fattori ambientali diminuisce all’aumentare dell’aridità del clima. Disturbi frequenti potrebbero provocare estinzioni locali seguite da ricolonizzazioni di specie provenienti dai siti vicini, riducendo la corrispondenza tra gli organismi e le loro richieste ambientali e quindi diminuendo la quantità di variabilità spiegata dai fattori ambientali. Si può quindi concludere che processi deterministici e stocastici non si escludono mutualmente, ma contribuiscono contemporaneamente a strutturare le comunità di invertebrati sorgentizi. Infine, a scala continentale, le comunità di ostracodi sorgentizi mostrano chiari pattern biogeografici e sono organizzate lungo gradienti ambientali principalmente collegati altitudine, latitudine, temperatura dell’acqua e conducibilità. Anche la tipologia di sorgente (elocrena, reocrena o limnocrena) è influente sulla composizione delle comunità. La presenza di specie rare ed endemiche inoltre caratterizza specifiche regioni geografiche.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our method is presented with displaying time series, consisting of the daily amount of precipitation of 100 years, which has meant a separate challenge, as the precipitation data shows significant deviations. By nowadays, mankind has changed its environment to such an extent that it has a significant effect on other species as well. The Lepidoptera data series of the National Plant Protection and Forestry Light Trap Network can be used to justify this. This network has a national coverage, a large number of collected Lepidoptera, and an available, long data series of several years. For obtaining information from these data, the setting up of an easy to manage database is necessary. Furthermore, it is important to represent our data and our results in an easily analysable and expressive way. In this article the setting up of the database is introduced, together with the presentation of a three dimensional visualization method, which depicts the long-range and seasonal changes together.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

δ13C and δ15N values were determined for the seagrassThalassia testudinum at four permanent seagrass monitoring stations in southFlorida, USA, through a quarterly sampling program over 3-years (1996–1998). All sites are seagrass beds with water depths of less than 6 m. Two sites are located on the Florida Bay side of the Florida Keys, and the other two sites are on the Atlantic side. The data analyzed over the 3 year study period display unique patterns associated with seasonal changes in primary productivity and potentially changes in the N and C pools. The mean carbon and nitrogenisotope values of T. testudinum from all four stations vary from −7.2 to −10.4‰ and 1.1 to 2.2‰, respectively. However, certain stations displayed anomalously depleted nitrogenisotope values (as low as −1.2‰). These values may indicate that biogeochemical processes like N fixation, ammonification and denitrification cause temporal changes in the isotopic composition of the source DIN. Both δ13C and δ15N values displayed seasonal enrichment-depletion patterns, with maximum enrichment occurring during the summer to early fall. The intra-annual variations of δ13C values from the different stations ranged from about 1 to 3.5‰; whereas variations in δ15N ranged from about 1 to 4.9‰. Certain sites showed a positive relationship between isotope values and productivity. These data indicate δ13C values display a high degree of seasonal variability as related to changes in productivity. δ15N values show clear intra-annual variations, but the observed changes do not necessarily follow a distinct seasonal cycle, indicating that changes in DIN will need further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface water flow patterns in wetlands play a role in shaping substrates, biogeochemical cycling, and ecosystem characteristics. This paper focuses on the factors controlling flow across a large, shallow gradient subtropical wetland (Shark River Slough in Everglades National Park, USA), which displays vegetative patterning indicative of overland flow. Between July 2003 and December 2007, flow speeds at five sites were very low (s−1), and exhibited seasonal fluctuations that were correlated with seasonal changes in water depth but also showed distinctive deviations. Stepwise linear regression showed that upstream gate discharges, local stage gradients, and stage together explained 50 to 90% of the variance in flow speed at four of the five sites and only 10% at one site located close to a levee-canal combination. Two non-linear, semi-empirical expressions relating flow speeds to the local hydraulic gradient, water depths, and vegetative resistance accounted for 70% of the variance in our measured speed. The data suggest local-scale factors such as channel morphology, vegetation density, and groundwater exchanges must be considered along with landscape position and basin-scale geomorphology when examining the interactions between flow and community characteristics in low-gradient wetlands such as the Everglades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The abundance of calcareous green algae was recorded quarterly at 28 sites within the Florida Keys National Marine Sanctuary (FKNMS) for a period of 7 years as part of a sea grass monitoring program. To evaluate the validity of using the functional-form group approach, we designed a sampling method that included the functional-form group and the component genera. This strategy enabled us to analyze the spatiotemporal patterns in the abundance of calcareous green algae as a group and to describe synchronous behavior among its genera through the application of a nonlinear regression model to both categories of data. Spatial analyses revealed that, in general, all genera displayed long-term trends of increasing abundance at most sites; however, at some sites the long-term trends for genera opposed one another. Strong synchrony in the timing of seasonal changes was found among all genera, possibly reflecting similar reproductive and seasonal growth pattern, but the variability in the magnitude of seasonal changes was very high among genera and sites. No spatial patterns were found in long-term or seasonal changes; the only significant relation detected was for slope, with sites closer to land showing higher values, suggesting that some factors associated with land proximity are affecting this increase. We conclude that the abundances of genera behaved differently from the functional-form group, indicating that the use of the functionalform group approach may be unsuitable to detect changes in sea grass community structure in the FKNMS at the existing temporal and spatial scale of the monitoring program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m**3, and an additional reference plot in the ambient environment (2 m**2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification and warming will be most pronounced in the Arctic Ocean. Aragonite shell-bearing pteropods in the Arctic are expected to be among the first species to suffer from ocean acidification. Carbonate undersaturation in the Arctic will first occur in winter and because this period is also characterized by low food availability, the overwintering stages of polar pteropods may develop into a bottleneck in their life cycle. The impacts of ocean acidification and warming on growth, shell degradation (dissolution), and mortality of two thecosome pteropods, the polar Limacina helicina and the boreal L. retroversa, were studied for the first time during the Arctic winter in the Kongsfjord (Svalbard). The abundance of L. helicina and L. retroversa varied from 23.5 to 120 ind /m2 and 12 to 38 ind /m2, and the mean shell size ranged from 920 to 981 µm and 810 to 823 µm, respectively. Seawater was aragonite-undersaturated at the overwintering depths of pteropods on two out of ten days of our observations. A 7-day experiment [temperature levels: 2 and 7 °C, pCO2 levels: 350, 650 (only for L. helicina) and 880 ?atm] revealed a significant pCO2 effect on shell degradation in both species, and synergistic effects between temperature and pCO2 for L. helicina. A comparison of live and dead specimens kept under the same experimental conditions indicated that both species were capable of actively reducing the impacts of acidification on shell dissolution. A higher vulnerability to increasing pCO2 and temperature during the winter season is indicated compared with a similar study from fall 2009. Considering the species winter phenology and the seasonal changes in carbonate chemistry in Arctic waters, negative climate change effects on Arctic thecosomes are likely to show up first during winter, possibly well before ocean acidification effects become detectable during the summer season.