998 resultados para radiation trends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General issues of X-ray imaging such as the benefits of the method of direct conversion of X-rays to signal charge in comparison to the indirect method and the pros and cons of photon counting vs. charge integration are discussed. A novel design of Si and CdTe pixel detectors and the analysis of their imaging performance in terms of SNR, MTF, DQE and dynamic range are presented in detail. The analysis shows that directly converting crystalline semiconductor pixel detectors operated in the charge integration mode can be used in X-ray imaging very close to the theoretical performance limits in terms of efficiency and resolution. Examples of the application of the developed imaging technology to dental intra oral and panoramic and to real time X-ray imaging are given. A CdTe photon counting gamma imager is introduced. A physical model to calculate the photo peak efficiency of photon counting CdTe pixel detectors is developed and described in detail. Simulation results indicates that the charge sharing phenomenon due to diffusion of signal charge carriers limits the pixel size of photon counting detectors to about 250 μm. Radiation hardness issues related to gamma and X-ray imaging detectors are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Transition Radiation Tracker (TRT) of the ATLAS experiment at the LHC is part of the Inner Detector. It is designed as a robust and powerful gaseous detector that provides tracking through individual drift-tubes (straws) as well as particle identification via transition radiation (TR) detection. The straw tubes are operated with Xe-CO2-O2 70/27/3, a gas that combines the advantages of efficient TR absorption, a short electron drift time and minimum ageing effects. The modules of the barrel part of the TRT were built in the United States while the end-cap wheels are assembled at two Russian institutes. Acceptance tests of barrel modules and end-cap wheels are performed at CERN before assembly and integration with the Semiconductor Tracker (SCT) and the Pixel Detector. This thesis first describes simulations the TRT straw tube. The argon-based acceptance gas mixture as well as two xenon-based operating gases are examined for its properties. Drift velocities and Townsend coefficients are computed with the help of the program Magboltz and used to study electron drift and multiplication in the straw using the software Garfield. The inclusion of Penning transfers in the avalanche process leads to remarkable agreements with experimental data. A high level of cleanliness in the TRT s acceptance test gas system is indispensable. To monitor gas purity, a small straw tube detector has been constructed and extensively used to study the ageing behaviour of the straw tube in Ar-CO2. A variety of ageing tests are presented and discussed. Acceptance tests for the TRT survey dimensions, wire tension, gas-tightness, high-voltage stability and gas gain uniformity along each individual straw. The thesis gives details on acceptance criteria and measurement methods in the case of the end-cap wheels. Special focus is put on wire tension and straw straightness. The effect of geometrically deformed straws on gas gain and energy resolution is examined in an experimental setup and compared to simulation studies. An overview of the most important results from the end-cap wheels tested up to this point is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methods for estimating patient exposure in x-ray imaging are based on the measurement of radiation incident on the patient. In digital imaging, the useful dose range of the detector is large and excessive doses may remain undetected. Therefore, real-time monitoring of radiation exposure is important. According to international recommendations, the measurement uncertainty should be lower than 7% (confidence level 95%). The kerma-area product (KAP) is a measurement quantity used for monitoring patient exposure to radiation. A field KAP meter is typically attached to an x-ray device, and it is important to recognize the effect of this measurement geometry on the response of the meter. In a tandem calibration method, introduced in this study, a field KAP meter is used in its clinical position and calibration is performed with a reference KAP meter. This method provides a practical way to calibrate field KAP meters. However, the reference KAP meters require comprehensive calibration. In the calibration laboratory it is recommended to use standard radiation qualities. These qualities do not entirely correspond to the large range of clinical radiation qualities. In this work, the energy dependence of the response of different KAP meter types was examined. According to our findings, the recommended accuracy in KAP measurements is difficult to achieve with conventional KAP meters because of their strong energy dependence. The energy dependence of the response of a novel large KAP meter was found out to be much lower than with a conventional KAP meter. The accuracy of the tandem method can be improved by using this meter type as a reference meter. A KAP meter cannot be used to determine the radiation exposure of patients in mammography, in which part of the radiation beam is always aimed directly at the detector without attenuation produced by the tissue. This work assessed whether pixel values from this detector area could be used to monitor the radiation beam incident on the patient. The results were congruent with the tube output calculation, which is the method generally used for this purpose. The recommended accuracy can be achieved with the studied method. New optimization of radiation qualities and dose level is needed when other detector types are introduced. In this work, the optimal selections were examined with one direct digital detector type. For this device, the use of radiation qualities with higher energies was recommended and appropriate image quality was achieved by increasing the low dose level of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar ultraviolet (UV) radiation has a broad range of effects concerning life on Earth. Soon after the mid-1980s, it was recognized that the stratospheric ozone content was declining over large areas of the globe. Because the stratospheric ozone layer protects life on Earth from harmful UV radiation, this lead to concern about possible changes in the UV radiation due to anthropogenic activity. Initiated by this concern, many stations for monitoring of the surface UV radiation were founded in the late 1980s and early 1990s. As a consequence, there is an apparent lack of information on UV radiation further in the past: measurements cannot tell us how the UV radiation levels have changed on time scales of, for instance, several decades. The aim of this thesis was to improve our understanding of past variations in the surface UV radiation by developing techniques for UV reconstruction. Such techniques utilize commonly available meteorological data together with measurements of the total ozone column for reconstructing, or estimating, the amount of UV radiation reaching Earth's surface in the past. Two different techniques for UV reconstruction were developed. Both are based on first calculating the clear-sky UV radiation using a radiative transfer model. The clear-sky value is then corrected for the effect of clouds based on either (i) sunshine duration or (ii) pyranometer measurements. Both techniques account also for the variations in the surface albedo caused by snow, whereas aerosols are included as a typical climatological aerosol load. Using these methods, long time series of reconstructed UV radiation were produced for five European locations, namely Sodankylä and Jokioinen in Finland, Bergen in Norway, Norrköping in Sweden, and Davos in Switzerland. Both UV reconstruction techniques developed in this thesis account for the greater part of the factors affecting the amount of UV radiation reaching the Earth's surface. Thus, they are considered reliable and trustworthy, as suggested also by the good performance of the methods. The pyranometer-based method shows better performance than the sunshine-based method, especially for daily values. For monthly values, the difference between the performances of the methods is smaller, indicating that the sunshine-based method is roughly as good as the pyranometer-based for assessing long-term changes in the surface UV radiation. The time series of reconstructed UV radiation produced in this thesis provide new insight into the past UV radiation climate and how the UV radiation has varied throughout the years. Especially the sunshine-based UV time series, extending back to 1926 and 1950 at Davos and Sodankylä, respectively, also put the recent changes driven by the ozone decline observed over the last few decades into perspective. At Davos, the reconstructed UV over the period 1926-2003 shows considerable variation throughout the entire period, with high values in the mid-1940s, early 1960s, and in the 1990s. Moreover, the variations prior to 1980 were found to be caused primarily by variations in the cloudiness, while the increase of 4.5 %/decade over the period 1979-1999 was supported by both the decline in the total ozone column and changes in the cloudiness. Of the other stations included in this work, both Sodankylä and Norrköping show a clear increase in the UV radiation since the early 1980s (3-4 %/decade), driven primarily by changes in the cloudiness, and to a lesser extent by the diminution of the total ozone. At Jokioinen, a weak increase was found, while at Bergen there was no considerable overall change in the UV radiation level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for functional lung imaging was introduced by adapting the K-edge subtraction method (KES) to in vivo studies of small animals. In this method two synchrotron radiation energies, which bracket the K-edge of the contrast agent, are used for simultaneous recording of absorption-contrast images. Stable xenon gas is used as the contrast agent, and imaging is performed in projection or computed tomography (CT) mode. Subtraction of the two images yields the distribution of xenon, while removing practically all features due to other structures, and the xenon density can be calculated quantitatively. Because the images are recorded simultaneously, there are no movement artifacts in the subtraction image. Time resolution for a series of CT images is one image/s, which allows functional studies. Voxel size is 0.1mm3, which is an order better than in traditional lung imaging methods. KES imaging technique was used in studies of ventilation distribution and the effects of histamine-induced airway narrowing in healthy, mechanically ventilated, and anaesthetized rabbits. First, the effect of tidal volume on ventilation was studied, and the results show that an increase in tidal volume without an increase in minute ventilation results a proportional increase in regional ventilation. Second, spiral CT was used to quantify the airspace volumes in lungs in normal conditions and after histamine aerosol inhalation, and the results showed large patchy filling defects in peripheral lungs following histamine provocation. Third, the kinetics of proximal and distal airway response to histamine aerosol were examined, and the findings show that the distal airways react immediately to histamine and start to recover, while the reaction and the recovery in proximal airways is slower. Fourth, the fractal dimensions of lungs was studied, and it was found that the fractal dimension is higher at the apical part of the lungs compared to the basal part, indicating structural differences between apical and basal lung level. These results provide new insights to lung function and the effects of drug challenge studies. Nowadays the technique is available at synchrotron radiation facilities, but the compact synchrotron radiation sources are being developed, and in relatively near future the method may be used at hospitals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar UV radiation is harmful for life on planet Earth, but fortunately the atmospheric oxygen and ozone absorb almost entirely the most energetic UVC radiation photons. However, part of the UVB radiation and much of the UVA radiation reaches the surface of the Earth, and affect human health, environment, materials and drive atmospheric and aquatic photochemical processes. In order to quantify these effects and processes there is a need for ground-based UV measurements and radiative transfer modeling to estimate the amounts of UV radiation reaching the biosphere. Satellite measurements with their near-global spatial coverage and long-term data conti-nuity offer an attractive option for estimation of the surface UV radiation. This work focuses on radiative transfer theory based methods used for estimation of the UV radiation reaching the surface of the Earth. The objectives of the thesis were to implement the surface UV algorithm originally developed at NASA Goddard Space Flight Center for estimation of the surface UV irradiance from the meas-urements of the Dutch-Finnish built Ozone Monitoring Instrument (OMI), to improve the original surface UV algorithm especially in relation with snow cover, to validate the OMI-derived daily surface UV doses against ground-based measurements, and to demonstrate how the satellite-derived surface UV data can be used to study the effects of the UV radiation. The thesis consists of seven original papers and a summary. The summary includes an introduction of the OMI instrument, a review of the methods used for modeling of the surface UV using satellite data as well as the con-clusions of the main results of the original papers. The first two papers describe the algorithm used for estimation of the surface UV amounts from the OMI measurements as well as the unique Very Fast Delivery processing system developed for processing of the OMI data received at the Sodankylä satellite data centre. The third and the fourth papers present algorithm improvements related to the surface UV albedo of the snow-covered land. Fifth paper presents the results of the comparison of the OMI-derived daily erythemal doses with those calculated from the ground-based measurement data. It gives an estimate of the expected accuracy of the OMI-derived sur-face UV doses for various atmospheric and other conditions, and discusses the causes of the differences between the satellite-derived and ground-based data. The last two papers demonstrate the use of the satellite-derived sur-face UV data. Sixth paper presents an assessment of the photochemical decomposition rates in aquatic environment. Seventh paper presents use of satellite-derived daily surface UV doses for planning of the outdoor material weathering tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within Australia, there have been many attempts to pass voluntary euthanasia (VE) or physician-assisted suicide (PAS) legislation. From 16 June 1993 until the date of writing, 51 Bills have been introduced into Australian parliaments dealing with legalising VE or PAS. Despite these numerous attempts, the only successful Bill was the Rights of the Terminally Ill Act 1995 (NT), which was enacted in the Northern Territory, but a short time later overturned by the controversial Euthanasia Laws Act 1997 (Cth). Yet, in stark contrast to the significant political opposition, for decades Australian public opinion has overwhelmingly supported law reform legalising VE or PAS. While there is ongoing debate in Australia, both through public discourse and scholarly publications, about the merits and dangers of reform in this field, there has been remarkably little analysis of the numerous legislative attempts to reform the law, and the context in which those reform attempts occurred. The aim of this article is to better understand the reform landscape in Australia over the past two decades. The information provided in this article will better equip Australians, both politicians and the general public, to have a more nuanced understanding of the political context in which the euthanasia debate has been and is occurring. It will also facilitate a more informed debate in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social work in health care has been established for more than 100 years and is one of the largest areas of practice for social workers. Over time, demographic changes and growth in the aging population, increased longevity rates, an explosion in rates of chronic illness together with rapidly increasing cost of health care have created serious challenges for acute hospitals and health social workers. This article reviews the Australian health care system and policies with particular emphasis on the public hospital system. It then examines current hospital social work roles, including the continued role in discharge planning and expanding responsibility for emerging client problems, such as patient complexity, legal, and carer issues. The article concludes with a discussion of evolving issues and challenges facing health social work to ensure that social work remain relevant within this practice context.