954 resultados para quinolone derivative
Resumo:
The quassinoid analogue NBT-272 has been reported to inhibit MYC, thus warranting a further effort 7to better understand its preclinical properties in models of embryonal tumors (ET), a family of childhood malignancies sharing relevant biological and genetic features such as deregulated expression of MYC oncogenes. In our study, NBT-272 displayed a strong antiproliferative activity in vitro that resulted from the combination of diverse biological effects, ranging from G(1)/S arrest of the cell cycle to apoptosis and autophagy. The compound prevented the full activation of both eukaryotic translation initiation factor 4E (eIF4E) and its binding protein 4EBP-1, regulating cap-dependent protein translation. Interestingly, all responses induced by NBT-272 in ET could be attributed to interference with 2 main proproliferative signaling pathways, that is, the AKT and the MEK/extracellular signal-regulated kinase pathways. These findings also suggested that the depleting effect of NBT-272 on MYC protein expression occurred via indirect mechanisms, rather than selective inhibition. Finally, the ability of NBT-272 to arrest tumor growth in a xenograft model of neuroblastoma plays a role in the strong antitumor activity of this compound, both in vitro and in vivo, with its potential to target cell-survival pathways that are relevant for the development and progression of ET.
Resumo:
Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole or directly on the bone-forming cells. In addition, it is not known if the presentation of PTH by adding the amino acid sequence Arg-Gly-Asp (RGD) is essential for its osteopromotive effect. Local delivery of a bioactive substance at the right time and in the right concentration often constitutes a major challenge. Polyethylene glycol-based hydrogel (PEG) is a degradable vehicle developed for delivery of bioactive proteins. To enhance the mechanical stability of the PEG-bioactive substance complex, an osteoconductive bone substitute material is often needed.
Resumo:
The aim of this study was to evaluate the 4-year clinical outcomes following regenerative surgery in intrabony defects with either EMD + BCP or EMD. Twenty-four patients with advanced chronic periodontitis, displaying one-, two-, or three-walled intrabony defect with a probing depth of at least 6 mm, were randomly treated with either EMD + BCP (test) or EMD alone (control). The following clinical parameters were evaluated at baseline, at 1 year and at 4 years after regenerative surgery: plaque index, gingival index, bleeding on probing, probing depth, gingival recession, and clinical attachment level (CAL). The primary outcome variable was CAL. No differences in any of the investigated parameters were observed at baseline between the two groups. The test group demonstrated a mean CAL change from from 10.8 ± 1.6 mm to 7.4 ± 1.6 mm (p < 0.001) and to 7.6 ± 1.7 mm (p < 0.001) at 1 and 4 years, respectively. In the control group, mean CAL changed from 10.4 ± 1.3 at baseline to 6.9 ± 1.0 mm (p < 0.001) at 1 year and 7.2 ± 1.2 mm (p < 0.001) at 4 years. At 4 years, two defects in the test group and three defects in the control group have lost 1 mm of the CAL gained at 1 year. Compared to baseline, at 4 years, a CAL gain of ≥3 mm was measured in 67% of the defects (i.e., in 8 out of 12) in the test group and in 75% of the defects (i.e., in 9 out of 12) in the control group. There were no statistically significant differences in any of the investigated parameters at 1 and at 4 years between the two groups. Within their limits, the present results indicate that: (a) the clinical improvements obtained with both treatments can be maintained over a period of 4 years, and (b) in two- and three-walled intrabony defects, the addition of BCP did not additionally improve the outcomes obtained with EMD alone. In two- and three-walled intrabony defects, the combination of EMD + BCP did not show any advantage over the use of EMD alone.
Resumo:
1.--The immunomodulating agent FTY720 is a substrate for the sphingosine kinase and the phosphorylated form is able to bind to sphingosine 1-phosphate (S1P) receptors. In this study, we show that exposure of renal mesangial cells to phospho-FTY720 leads to a rapid and transient activation of several protein kinase cascades, including the mitogen- and stress-activated protein kinases. The nonphosphorylated FTY720 also increased MAPK phosphorylation, but with a reduced potency and a more delayed time course. In addition, phospho-FTY720 and FTY720 are able to increase phosphorylation of Smad proteins which are classical members of the transforming growth factor-beta (TGF-beta) signalling device, thus suggesting a crosstalk between FTY720 and TGF-beta signalling. 2.--Pretreatment with the S1P(3) receptor antagonist suramin inhibits FTY720 and phospho-FTY720-induced Smad phosphorylation, whereas pertussis toxin pretreatment, which blocks G(i/0) proteins, has no effect on Smad phosphorylation. 3.--Since TGF-beta is a potent profibrotic cytokine in mesangial cells and upregulates the connective tissue growth factor (CTGF) and collagen as important hallmarks in the fibrotic sequelae, we investigated whether FTY720 and phospho-FTY720 are able to mimic these effects of TGF-beta. Indeed, FTY720 and phospho-FTY720 markedly upregulate CTGF and collagen type IV protein expressions. In addition, the tissue inhibitor of metalloproteinase-1 is transcriptionally activated by FTY720, whereas cytokine-induced matrix metalloproteinase-9 is down-regulated by FTY720. 4.--Depletion of the TGF-beta receptor type II by the siRNA transfection technique blocks not only Smad phosphorylation but also CTGF upregulation. Similarly, Smad-4 depletion by siRNA transfection also abrogates CTGF upregulation induced by FTY720 and phospho-FTY720. 5.--In summary, our data show that FTY720 and phospho-FTY720 not only activate the Smad signalling cascade in mesangial cells, but also upregulate the expression of CTGF and collagen. These findings suggest that FTY720 may have additional effects besides the established immunomodulatory action and, importantly, a profibrotic activity has to be considered in future experimental approaches.
Resumo:
PURPOSE: We aimed at designing and developing a novel bombesin analogue, DOTA-PEG(4)-BN(7-14) (DOTA-PESIN), with the goal of labelling it with (67/68)Ga and (177)Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. METHODS: The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG(4)). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. RESULTS: [Ga(III)/Lu(III)]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [(67)Ga/(177)Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [(67)Ga/(177)Lu]-DOTA-PESIN. [(67)Ga/(177)Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [(68)Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the (177)Lu-labelled peptide remained in the tumour even 3 days post injection. CONCLUSION: The newly designed ligands have high potential with regard to PET and SPECT imaging with (68/67)Ga and targeted radionuclide therapy with (177)Lu.
Resumo:
Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous deletion/inactivation of the survival of motoneuron 1 (SMN1) gene. The nearby SMN2 gene, despite its identical coding capacity, is only an incomplete substitute, because a single nucleotide difference impairs the inclusion of its seventh exon in the messenger RNA (mRNA). This splicing defect can be corrected (transiently) by specially designed oligonucleotides. Here we have developed a more permanent correction strategy based on bifunctional U7 small nuclear RNAs (snRNAs). These carry both an antisense sequence that allows specific binding to exon 7 and a splicing enhancer sequence that will improve the recognition of the targeted exon. When expression cassettes for these RNAs are stably introduced into cells, the U7 snRNAs become incorporated into small nuclear ribonucleoprotein (snRNP) particles that will induce a durable splicing correction. We have optimized this strategy to the point that virtually all SMN2 pre-mRNA becomes correctly spliced. In fibroblasts from an SMA patient, this approach induces a prolonged restoration of SMN protein and ensures its correct localization to discrete nuclear foci (gems).
Resumo:
In experimental rabbit meningitis, gemifloxacin penetrated inflamed meninges well (22 to 33%) and produced excellent bactericidal activity (change in log(10) [Deltalog(10)] CFU/ml/h, -0.68 +/- 0.30 [mean and standard deviation]), even superior to that of the standard regimen of ceftriaxone plus vancomycin (-0.49 +/- 0.09 deltalog(10) CFU/ml/h), in the treatment of meningitis due to a penicillin-resistant pneumococcal strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, gemifloxacin showed good bactericidal activity (-0.48 +/- 0.16 deltalog(10) CFU/ml/h). The excellent antibacterial activity of gemifloxacin was also confirmed by time-kill assays over 8 h in vitro.
Resumo:
In experimental rabbit meningitis, cefepime given at a dose of 100 mg/kg was associated with concentrations in the cerebrospinal fluid of between 5.3 and 10 mg/L and a bactericidal activity of -0.61 +/- 0.24 Delta log(10) cfu/mL x h, similar to the standard regimen of ceftriaxone combined with vancomycin (-0.58 +/- 0.14 Delta log(10) cfu/mL x h) in the treatment of meningitis due to a penicillin- and quinolone-resistant pneumococcal mutant strain (MIC 4 mg/L). Compared with the penicillin-resistant parental strain, the penicillin- and quinolone-resistant mutant was killed more slowly by cefepime and ceftriaxone in time-killing assays in vitro over 8 h.
Resumo:
BMS 284756 penetrated well into inflamed meninges (44% +/- 11%) and produced good bactericidal activity (-0.82 +/- 0.22 Delta log(10) CFU/ml. h) in the treatment of experimental meningitis in rabbits due to a penicillin-sensitive strain. BMS 284756 monotherapy had a greater potency than the standard regimen of ceftriaxone and vancomycin (-0.49 +/- 0.08 Delta log(10) CFU/ml. h) against a penicillin-resistant strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, BMS 284756 showed good bactericidal activity (-0.52 +/- 0.12 Delta log(10) CFU/ml. h). The antibacterial activity of BMS 284756 was confirmed by time-killing assays over 8 h in vitro.
Resumo:
BACKGROUND: The continuous spread of penicillin-resistant pneumococci represents a permanent threat in the treatment of pneumococcal infections, especially when strains show additional resistance to quinolones. The main objective of this study was to determine a treatment modality impeding the emergence of quinolone resistance. RESULTS: Exposure of a penicillin-resistant pneumococcus to increasing concentrations of trovafloxacin or ciprofloxacin selected for mutants resistant to these drugs. In the presence of sub-inhibitory concentrations of vancomycin, development of trovafloxacin-resistance and high-level ciprofloxacin-resistance were prevented. CONCLUSIONS: Considering the risk of quinolone-resistance in pneumococci, the observation might be of clinical importance.
Resumo:
Using a rabbit model of pneumococcal meningitis, we compared the pharmacokinetics and bactericidal activities in cerebrospinal fluid (CSF) of older (ciprofloxacin, ofloxacin) and newer (levofloxacin, temafloxacin, CP-116,517, and Win 57273) quinolones with those of the beta-lactam ceftriaxone. All quinolones penetrated into the inflamed CSF better than ceftriaxone, and the speed of entry into CSF was closely related to their degrees of lipophilicity. At a dose of 10 mg/kg.h, which in the case of the quinolones already in use in clinical practice produced concentrations attainable in the sera and CSF of humans, ciprofloxacin had no antipneumococcal activity (delta log10 CFU/ml.h, +0.20 +/- 0.14). Ofloxacin (delta log10 CFU/ml.h, -0.13 +/- 0.12), temafloxacin (delta log10 CFU/ml.h, -0.19 +/- 0.18), and levofloxacin (delta log10 CFU/ml.h, -0.24 +/- 0.16) showed slow bactericidal activity (not significantly different from each other), while CP-116,517 (delta log10 CFU/ml.h, -0.59 +/- 0.21) and Win 57273 (delta log10 CFU/ml.h, -0.72 +/- 0.20) showed increased bactericidal activities in CSF that was comparable to that of ceftriaxone at 10 mg/kg.h (delta log10 CFU/ml.h, -0.80 +/- 0.17). These improved in vivo activities of the newer quinolones reflected their increased in vitro activities. All quinolones and ceftriaxone showed positive correlations between bactericidal rates in CSF and concentrations in CSF relative to their MBCs. Only when this ratio exceeded 10 did the antibiotics exhibit rapid bactericidal activities in CSF. In conclusion, in experimental pneumococcal meningitis the activities of new quinolones with improved antipneumococcal activities were comparable to that of ceftriaxone.