921 resultados para production of queens
Resumo:
Plants present a cost effective production system for high value proteins. There is an increasing world demand for cheap vaccines that can be readily administered to the population, especially in economically less developed regions. A promising concept is the production of vaccines in plants that could be grown locally. Expression of antigenic peptides in the palatable parts of plants can lead to the production of edible active vaccines. Two major strategies are: i) to express antigens in transgenic plants, and ii) to produce antigenic peptides on the surface of plant viruses that could be used to infect host plants. This review considers the experimental data and early results for both strategies, and discusses the potential and problems of this new technology
A chromatographic method for the production of a human immunoglobulin G solution for intravenous use
Resumo:
Immunoglobulin G (IgG) of excellent quality for intravenous use was obtained from the cryosupernatant of human plasma by a chromatographic method based on a mixture of ion-exchange, DEAE-Sepharose FF and arginine Sepharose 4B affinity chromatography and a final purification step by Sephacryl S-300 HR gel filtration. The yield of 10 experimental batches produced was 3.5 g IgG per liter of plasma. A solvent/detergent combination of 1% Tri (n-butyl) phosphate and 1% Triton X-100 was used to inactivate lipid-coated viruses. Analysis of the final product (5% liquid IgG) based on the mean for 10 batches showed 94% monomers, 5.5% dimers and 0.5% polymers and aggregates. Anticomplementary activity was 0.3 CH50/mg IgG and prekallikrein activator levels were less than 5 IU/ml. Stability at 37ºC for 30 days in the liquid state was satisfactory. IgG was stored in flasks (2.5 g/flask) at 4 to 8ºC. All the characteristics of the product were consistent with the requirements of the 1997 Pharmacopée Européenne.
Resumo:
The biflavonoids 6,6"-bigenkwanin, amenthoflavone, 7,7"-dimethoxyagastisflavone and tetradimethoxybigenkwanin isolated from Ouratea species were tested for inhibitory activity on Aspergillus flavus cultures. Suspensions of Aspergillus flavus spores were inoculated into 50 ml of YES medium at different biflavonoid concentrations: 5 and 10 µg/ml for 6,6"-bigenkwanin, amenthoflavone and 7,7"-dimethoxyagastisflavone, and 5, 10, 15 and 20 µg/ml for tetradimethoxybigenkwanin. The four biflavonoids showed inhibitory activity on aflatoxin B1 and B2 production (P<0.001), but did not inhibit fungal growth at the concentration tested (P>0.05). These results show that biflavonoids can be used for the development of agents to control aflatoxin production.
Resumo:
The present study examined the in vitro and in vivo development of bovine nuclear-transferred embryos. A bovine fetal fibroblast culture was established and used as nucleus donor. Slaughterhouse oocytes were matured in vitro for 18 h before enucleation. Enucleated oocytes were fused with fetal fibroblasts with an electric stimulus and treated with cytochalasin D and cycloheximide for 1 h followed by cycloheximide alone for 4 h. Reconstructed embryos were cultured for 7-9 days and those which developed to blastocysts were transferred to recipient cows. Of 191 enucleated oocytes, 83 (43.5%) were successfully fused and 24 (28.9%) developed to blastocysts. Eighteen freshly cloned blastocysts were transferred to 14 recipients, 5 (27.8%) of which were pregnant on day 35 and 3 (16.7%) on day 90. Of the three cows that reached the third trimester, one recipient died of hydrallantois 2 months before term, one aborted fetus was recovered at 8 months of gestation, and one delivered by cesarian section a healthy cloned calf. Today, the cloned calf is 15 months old and presents normal body development (378 kg) and sexual behavior (libido and semen characteristics).
Resumo:
The production of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMN) can be induced by immune complexes and is an important component of phagocytosis in the killing of microorganisms, but can also be involved in inflammatory reactions when immune complexes are deposited in tissues. We have observed that fluid-phase IgG can inhibit the generation of ROS by rabbit PMN stimulated with precipitated immune complexes of IgG (ICIgG) in a dose-dependent manner, acting as a modulatory factor in the range of physiological IgG concentrations. This inhibitory effect is compatible with the known affinity (Kd) of monomeric IgG for the receptors involved (FcRII and FcRIII). The presence of complement components in the immune complexes results in a higher stimulation of ROS production. In this case, however, there is no inhibition by fluid-phase IgG. The effect of complement is strongly dependent on the presence of divalent cations (Ca2+ or Mg2+) in the medium, whereas the stimulation of ICIgG (without complement) does not depend on these cations. We have obtained some evidence indicating that iC3b should be the component involved in the effect of complement through interaction with the CR3 receptor. The absence of the inhibitory effect of fluid-phase IgG in ROS production when complement is present in the immune complex shows that complement may be important in vivo not only in the production of chemotactic factors for PMN, but also in the next phase of the process, i.e., the generation of ROS.
Resumo:
We report here the construction of a vector derived from pET3-His and pRSET plasmids for the expression and purification of recombinant proteins in Escherichia coli based on T7 phage RNA polymerase. The resulting pAE plasmid combined the advantages of both vectors: small size (pRSET), expression of a short 6XHis tag at N-terminus (pET3-His) and a high copy number of plasmid (pRSET). The small size of the vector (2.8 kb) and the high copy number/cell (200-250 copies) facilitate the subcloning and sequencing procedures when compared to the pET system (pET3-His, 4.6 kb and 40-50 copies) and also result in high level expression of recombinant proteins (20 mg purified protein/liter of culture). In addition, the vector pAE enables the expression of a fusion protein with a minimal amino-terminal hexa-histidine affinity tag (a tag of 9 amino acids using XhoI restriction enzyme for the 5'cloning site) as in the case of pET3-His plasmid and in contrast to proteins expressed by pRSET plasmids (a tag of 36 amino acids using BamHI restriction enzyme for the 5'cloning site). Thus, although proteins expressed by pRSET plasmids also have a hexa-histidine tag, the fusion peptide is much longer and may represent a problem for some recombinant proteins.
Resumo:
Because low tumor necrosis factor-alpha (TNF-alpha) production has been reported in malnourished children, in contrast with high production of TNF-alpha in experimental protein-energy malnutrition, we reevaluated the production of TNF-alpha in whole blood cultures from children with primary malnutrition free from infection, and in healthy sex- and age-matched controls. Mononuclear cells in blood diluted 1:5 in endotoxin-free medium released TNF-alpha for 24 h. Spontaneously released TNF-alpha levels (mean ± SEM), as measured by enzyme immunoassay in the supernatants of unstimulated 24-h cultures, were 10,941 ± 2,591 pg/ml in children with malnutrition (N = 11) and 533 ± 267 pg/ml in controls (N = 18) (P < 0.0001). TNF-alpha production was increased by stimulation with lipopolysaccharide (LPS), with maximal production of 67,341 ± 16,580 pg/ml TNF-alpha in malnourished children and 25,198 ± 2,493 pg/ml in controls (P = 0.002). In control subjects, LPS dose-dependently induced TNF-alpha production, with maximal responses obtained at 2000 ng/ml. In contrast, malnourished patients produced significantly more TNF-alpha with 0.02-200 ng/ml LPS, responded maximally at a 10-fold lower LPS concentration (200 ng/ml), and presented high-dose inhibition at 2000 ng/ml. TNF-alpha production a) was significantly influenced by LPS concentration in control subjects, but not in malnourished children, who responded strongly to very low LPS concentrations, and b) presented a significant, negative correlation (r = -0.703, P = 0.023) between spontaneous release and the LPS concentration that elicited maximal responses in malnourished patients. These findings indicate that malnourished children are not deficient in TNF-alpha production, and suggest that their cells are primed for increased TNF-alpha production.
Resumo:
The release of reactive oxygen specie (ROS) by activated neutrophil is involved in both the antimicrobial and deleterious effects in chronic inflammation. The objective of the present investigation was to determine the effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) on the production of ROS by stimulated rat neutrophils. Diclofenac (3.6 µM), indomethacin (12 µM), naproxen (160 µM), piroxicam (13 µM), and tenoxicam (30 µM) were incubated at 37ºC in PBS (10 mM), pH 7.4, for 30 min with rat neutrophils (1 x 10(6) cells/ml) stimulated by phorbol-12-myristate-13-acetate (100 nM). The ROS production was measured by luminol and lucigenin-dependent chemiluminescence. Except for naproxen, NSAIDs reduced ROS production: 58 ± 2% diclofenac, 90 ± 2% indomethacin, 33 ± 3% piroxicam, and 45 ± 6% tenoxicam (N = 6). For the lucigenin assay, naproxen, piroxicam and tenoxicam were ineffective. For indomethacin the inhibition was 52 ± 5% and diclofenac showed amplification in the light emission of 181 ± 60% (N = 6). Using the myeloperoxidase (MPO)/H2O2/luminol system, the effects of NSAIDs on MPO activity were also screened. We found that NSAIDs inhibited both the peroxidation and chlorinating activity of MPO as follows: diclofenac (36 ± 10, 45 ± 3%), indomethacin (97 ± 2, 100 ± 1%), naproxen (56 ± 8, 76 ± 3%), piroxicam (77 ± 5, 99 ± 1%), and tenoxicam (90 ± 2, 100 ± 1%), respectively (N = 3). These results show that therapeutic levels of NSAIDs are able to suppress the oxygen-dependent antimicrobial or oxidative functions of neutrophils by inhibiting the generation of hypochlorous acid.
Resumo:
Hypochlorous acid (HOCl) released by activated leukocytes has been implicated in the tissue damage that characterizes chronic inflammatory diseases. In this investigation, 14 indole derivatives, including metabolites such as melatonin, tryptophan and indole-3-acetic acid, were screened for their ability to inhibit the generation of this endogenous oxidant by stimulated leukocytes. The release of HOCl was measured by the production of taurine-chloramine when the leukocytes (2 x 10(6) cells/mL) were incubated at 37ºC in 10 mM phosphate-buffered saline, pH 7.4, for 30 min with 5 mM taurine and stimulated with 100 nM phorbol-12-myristate acetate. Irrespective of the group substituted in the indole ring, all the compounds tested including indole, 2-methylindole, 3-methylindole, 2,3-dimethylindole, 2,5-dimethylindole, 2-phenylindole, 5-methoxyindole, 6-methoxyindole, 5-methoxy-2-methylindole, melatonin, tryptophan, indole-3-acetic acid, 5-methoxy-2-methyl-3-indole-acetic acid, and indomethacin (10 µM) inhibited the chlorinating activity of myeloperoxidase (MPO) in the 23-72% range. The compounds 3-methylindole and indole-3-acetic acid were chosen as representative of indole derivatives in a dose-response study using purified MPO. The IC50 obtained were 0.10 ± 0.03 and 5.0 ± 1.0 µM (N = 13), respectively. These compounds did not affect the peroxidation activity of MPO or the production of superoxide anion by stimulated leukocytes. By following the spectral change of MPO during the enzyme turnover, the inhibition of HOCl production can be explained on the basis of the accumulation of the redox form compound-II (MPO-II), which is an inactive chlorinating species. These results show that indole derivatives are effective and selective inhibitors of MPO-chlorinating activity.
Resumo:
Lactobacilli isolated from the vaginal tract of women with and without bacterial vaginosis (BV) were identified and characterized for the production of antagonists. Bacterial samples were isolated from healthy women (N = 16), from patients with clinical complaints but without BV (N = 30), and from patients with BV (N = 32). Identification was performed using amplified ribosomal DNA restriction analysis. Production of antagonistic compounds was evaluated by the double-layer diffusion technique using Gram-positive (N = 9) and Gram-negative bacteria (N = 6) as well as yeast (N = 5) as indicator strains. Of a total of 147 isolates, 133 were identified as pertaining to the genus Lactobacillus. Lactobacillus crispatus was the species most frequently recovered, followed by L. johnsonii and L. jensenii. Statistical analysis showed that L. crispatus was more frequent in individuals without BV (P < 0.05). A higher production of antagonists was noted in L. crispatus isolates from healthy women (P < 0.05). More acidic local pH and higher H2O2 production by isolated lactobacilli from healthy women suggest these mechanisms as the possible cause of this antagonism. In conclusion, a significant correlation was detected between the presence and antagonistic properties of certain species of Lactobacillus and the clinical status of the patients.
Resumo:
The limited amount of information on the primary age-related deficiencies in the innate immune system led us to study the production of inducible nitric oxide synthase (iNOS), arginase, and cytokines in macrophages of young (8 weeks old) and old (72 weeks old) female BALB/c mice. We first evaluated iNOS and arginase inducers on peritoneal (PMΦ) and bone marrow-derived (BMMΦ) macrophages of young BALB/c and C57BL/6 mice, and then investigated their effects on macrophages of old mice. Upon stimulation with lipopolysaccharide (LPS), resident and thioglycolate-elicited PMΦ from young mice presented higher iNOS activity than those from old mice (54.4%). However, LPS-stimulated BMMΦ from old mice showed the highest NO levels (50.1%). Identical NO levels were produced by PMΦ and BMMΦ of both young and old mice stimulated with interferon-γ. Arginase activity was higher in resident and elicited PMΦ of young mice stimulated with LPS (48.8 and 32.7%, respectively) and in resident PMΦ stimulated with interleukin (IL)-4 (64%). BMMΦ of old mice, however, showed higher arginase activity after treatment with IL-4 (46.5%). In response to LPS, PMΦ from old mice showed the highest levels of IL-1α (772.3 ± 51.9 pg/mL), whereas, those from young mice produced the highest amounts of tumor necrosis factor (TNF)-α (937.2 ± 132.1 pg/mL). Only TNF-α was expressed in LPS-treated BMMΦ, and cells from old mice showed the highest levels of this cytokine (994.1 ± 49.42 pg/mL). Overall, these results suggest that macrophages from young and old mice respond differently to inflammatory stimuli, depending on the source and maturity of the cell donors.
Resumo:
Human T lymphotropic virus type 1 (HTLV-1) is the causal agent of myelopathy/tropical spastic paraparesis (HAM/TSP), a disease mediated by the immune response. HTLV-1 induces a spontaneous proliferation and production of pro-inflammatory cytokines by T cells, and increasing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels are potentially involved in tissue damage in diseases related to HTLV-1. This exaggerated immune response is also due to an inability of the natural regulatory mechanisms to down-modulate the immune response in this group of patients. TNF-α inhibitors reduce inflammation and have been shown to improve chronic inflammatory diseases in clinical trials. The aim of this study was to evaluate the ability of pentoxifylline, forskolin, rolipram, and thalidomide to decrease in vitro production of TNF-α and IFN-γ in cells of HTLV-1-infected subjects. Participants of the study included 19 patients with HAM/TSP (mean age, 53 ± 11; male:female ratio, 1:1) and 18 HTLV-1 carriers (mean age, 47 ± 11; male:female ratio, 1:2.6). Cytokines were determined by ELISA in supernatants of mononuclear cell cultures. Pentoxifylline inhibited TNF-α and IFN-γ synthesis with the minimum dose used (50 µM). The results with forskolin were similar to those observed with pentoxifylline. The doses of rolipram used were 0.01-1 µM and the best inhibition of TNF-α production was achieved with 1 µM and for IFN-γ production it was 0.01 µM. The minimum dose of thalidomide used (1 µM) inhibited TNF-α production but thalidomide did not inhibit IFN-γ production even when the maximum dose (50 µM) was used. All drugs had an in vitro inhibitory effect on TNF-α production and, with the exception of thalidomide, all of them also decreased IFN-γ production.
Resumo:
Human papillomavirus (HPV) infection is the most common sexually transmitted disease in the world and is related to the etiology of cervical cancer. The most common high-risk HPV types are 16 and 18; however, the second most prevalent type in the Midwestern region of Brazil is HPV-33. New vaccine strategies against HPV have shown that virus-like particles (VLP) of the major capsid protein (L1) induce efficient production of antibodies, which confer protection against the same viral type. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system for the production of high levels of heterologous proteins stably using a wild-type gene in combination with an integrative vector. It was recently demonstrated that P. pastoris can produce the HPV-16 L1 protein by using an episomal vector associated with the optimized L1 gene. However, the use of an episomal vector is not appropriate for protein production on an industrial scale. In the present study, the vectors were integrated into the Pichia genome and the results were positive for L1 gene transcription and protein production, both intracellularly and in the extracellular environment. Despite the great potential for expression by the P. pastoris system, our results suggest a low yield of L1 recombinant protein, which, however, does not make this system unworkable. The achievement of stable clones containing the expression cassettes integrated in the genome may permit optimizations that could enable the establishment of a platform for the production of VLP-based vaccines.
Resumo:
It is currently accepted that superoxide anion (O2•−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.
Resumo:
Whey is produced in large amounts by cheese industries. This by-product can be used for biomass production by yeast cultivation, resulting in commercially attractive products. The use of yeast extracts as source of flavour enhancer consists of an expansible market, encouraged by costumer's choice for natural additives. The development of a suitable and economically viable project for the generation of valued-added by-products, may allow the dairy industry to diversify their portfolio and increase their rentability.