979 resultados para pathogens
Resumo:
Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 angstrom X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB(7XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.
Resumo:
This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeiro Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.
Resumo:
Sclerotinia sclerotiorum is a highly aggressive pathogen that causes great economic losses, especially in temperate climates. Several biological control agents are available, but actinobacteria have seldom been used to control this fungus. Our objective was to evaluate the efficiency and ultrastructural effects of the secondary metabolites produced by the ant-associated actinobacterium Propionicimonas sp. ENT-18 in controlling the sclerotia of S. sclerotiorum. We demonstrated total inhibition of sclerotia treated with 62.5 mu g/10 mu l of an ethyl acetate extract of compounds produced by ENT-18, and calculated an LC(50) of 1.69 mu g/sclerotia. Histological and ultrastructural analysis indicated that the cells of the treated sclerotia were severely damaged, suggesting direct action of the biomolecule(s) produced by the actinobacterium ENT-18 on the cell structure of the medullae and rind cell wall. This is the first report demonstrating a novel property of Propionicimonas sp.-antifungal activity against S. sclerotiorum.
Resumo:
Generalist pathogens frequently exist as a complex of genetically differentiated strains, which can differ in virulence and transmissibility. A description of the extent to which strain variability mediates host species competence is needed to understand disease dynamics for systems with both host and pathogen strain diversity. This study tested the hypothesis that strain-specific variation of a generalist vector-borne plant pathogen, Xylella fastidiosa, affects disease severity in alfalfa (Medicago sativa) and competence of this crop as a reservoir host. Alfalfa seedlings were inoculated with one of 23 X. fastidiosa isolates collected from different hosts, eight identified as belonging to an almond strain, and the remainder from a grape strain. Pathogen population, symptom severity and infection incidence were compared over five successive harvests. Infected plant size, measured mainly by plant height, internode length and above ground biomass, was reduced up to 50% compared to buffer-inoculated controls, and more severe symptoms were observed at later harvests and for higher pathogen populations. Grape isolates had higher bacterial populations within alfalfa than almond isolates. In addition, infection with grape isolates resulted in more severe alfalfa stunting than that caused by almond isolates. Moreover, there was a strong positive relationship between isolate multiplication rate and both symptom severity and infection persistence (i.e. maintenance of chronic infection within host). Isolates with low initial populations had low incidence at the final harvest, with one isolate dying out altogether. The results showed that X. fastidiosa-genetic diversity contributed to variation in alfalfa disease severity. The results also suggest that pathogen strain may mediate host competence via differences in bacterial population density and persistence.
Resumo:
2. We documented the within-host distribution of two vector species that differ in transmission efficiency, the leafhoppers Draeculacephala minerva and Graphocephala atropunctata, and which are free to move throughout entirely caged alfalfa plants. The more efficient vector D. minerva fed preferentially at the base of the plant near the soil surface, whereas the less efficient G. atropunctata preferred overwhelming the top of the plant. 3. Next we documented X. fastidiosa heterogeneity in mechanically inoculated plants. Infection rates were up to 50% higher and mean bacterial population densities were 100-fold higher near the plant base than at the top or in the taproot. 4. Finally, we estimated transmission efficiency of the two leafhoppers when they were confined at either the base or top of inoculated alfalfa plants. Both vectors were inefficient when confined at the top of infected plants and were 20-60% more efficient when confined at the plant base. 5. These results show that vector transmission efficiency is determined by the interaction between leafhopper within-plant feeding behaviour and pathogen within-plant distribution. Fine-scale vector and pathogen overlap is likely to be a requirement generally for efficient transmission of vector-borne pathogens.
Resumo:
The spider mites Tetranychus urticae Koch and Tetranychus evansi Baker and Pritchard are important pests of horticultural crops. They are infected by entomopathogenic fungi naturally or experimentally. Fungal pathogens known to cause high infection in spider mite populations belong to the order Entomophthorales and include Neozygites spp. Studies are being carried out to develop some of these fungi as mycoacaricides, as standalone control measures in an inundative strategy to replace the synthetic acaricides currently in use or as a component of integrated mite management. Although emphasis has been put on inundative releases, entomopathogenic fungi can also be used in classical, conservation and augmentative biological control. Permanent establishment of an exotic agent in a new area of introduction may be possible in the case of spider mites. Conservation biological control can be achieved by identifying strategies to promote any natural enemies already present within crop ecosystems, based on a thorough understanding of their biology, ecology and behaviour. Further research should focus on development of efficient mass production systems, formulation, and delivery systems of fungal pathogens.
Resumo:
Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.
Resumo:
Endophytic microorganisms reside asymptomatically within plants and are a source of new bioactive products for use in medicine, agriculture, and industry. Colletotrichum (teleomorph Glomerella) is a fungus widely cited in the literature as a producer of antimicrobial substances. Identification at the species level, however, has been a problem in this type of study. Several authors have reported the presence of endophytic fungi from the medicinal plant Maytenus ilicifolia (espinheira-santa) in Brazil that has antimicrobial activity against various pathogens. Therefore, Colletotrichum strains were isolated from M. ilicifolia and identified based on morphology, RAPD markers, sequence data of the internal transcribed spacer regions (ITS-1 and ITS-2), the 5.8S gene, and species-specific PCR. The analyses suggested the presence of 2 species, Colletotrichum gloeosporioides and Colletotrichum boninense. Two morphological markers were characterized to allow C. gloeosporioides and C. boninense to be distinguished quickly and accurately. The molecular diagnosis of C. boninense was confirmed by using Coll and ITS4 primers. This species of Colletotrichum is reported for the first time in M. ilicifolia.
Resumo:
Anthracnose, caused by Colletotrichum gloeosporioides and C acutatum, is one of file main post-harvest diseases in guavas. This study aimed to determine the influence of environmental variables oil germination and appressorium formation of Colletotrichum gloeosporioides and C acutatum and infection of Kumagai guavas by these pathogens. The germination rate and the apressorium formation rate in vitro were determined under temperatures of 10, 15, 20, 25, 30, 35 and 40 degrees C, with wetting periods of 6, 12 and 24 hours, The infection of guavas was determined under temperatures of 15, 20, 25 and 30 degrees C and wetting period of 24 hours. There was no germination at 40 degrees C for either species. The germination and apressorium formation rate were rather high in the range of 15 to 30 degrees C for C. gloeosporioides, with a maximum at 25 degrees C. For the species C. acutatum, germination and apressorium formation rates were more sensitive to variations in temperature, with a maximum at 20 degrees C. The wetting periods tested somewhat influenced the germination of C. gloeosporioides, whereas in C acutatum the germination was significantly lower with 6 hours of wetting than 12 and 24 hours. The infection of guavas, for both fungal species, increased with the temperature, unlike conidium germination and apressorium formation. Incidences of 100% occurred with 30 degrees C, at 10 days after the inoculation.
Resumo:
Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of Sao Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were reisolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms.
Resumo:
`Swingle` citrumelo [Citrus paradisi MacFaden x Poncirus trifoliata (L.) Raf.] has been extensively used as a rootstock in several citrus growing regions of the World, including Southern Brazil where `Rangpur` lime (Citrus limonia Osbeck) is still the predominant variety despite being affected by several important pathogens. in this case, `Swingle` citrumelo is used to produce nursery trees to establish new orchards or to be inarched in adult and healthy groves in order to change the rootstock. We report herein a system to produce trees on `Swingle` citrumelo more rapidly by budding onto non-rooted cuttings, as well as assessing potential to rapidly multiply `Swingle` through rooting of non-budded cuttings. Therefore, two potential products are described: budded trees and rooted rootstock cuttings. `Valencia` sweet orange [Citrus sinensis (L.) Osbeck] was budded at different heights on cuttings derived from eight-month old rootstocks. Grafted and additional non-budded cuttings were then treated with indole-3-butyric acid (500 mg L(-1)) or left untreated before rooting. Three types of cuttings were evaluated: softwood, semi-hardwood and hardwood. The use of nursery trees derived from pre-budded hardwood cuttings of `Swingle` citrumelo is an alternative grafting method on this cultivar. Softwood cuttings with one leaf pair were considered the most adequate material for rapid multiplication of `Swingle` citrumelo by cutting. This could be particularly useful for inarching production or conventional budding after transplant of cutting-derived rootstocks. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Porphyromonas gingivalis and Tannerella forsythia are anaerobic bacteria commonly involved in root canal infections. Although previous investigations have assessed these species by strictly qualitative approaches, accurate determination of their cell levels by a sensitive quantitative technique may contribute with additional information regarding relevance in pain of endodontic origin. Method: The root canal levels of P gingivalis, T forsythia, and total bacteria were investigated by a quantitative polymerase chain reaction (PCR) assay based on unique copy molecular markers. A total of 32 symptomatic (n = 14) and asymptomatic (n = 18) cases of endodontic infections were analyzed. Root canal samples were collected; genomic DNA was extracted and submitted to SYBR Green I real-time PCR targeting the rgpB (P gingivalis), bspA (T forsythia), and rpoB (total bacteria) single copy genes. Results: Overall, R gingivalis, T forsythia, and the coexistence of both species were encountered in 28%, 66%, and 22% of the subjects, respectively. P gingivalis and T forsythia levels ranged from 5.65 x 10(-6) to 1.20 x 10(-2) and from 5.76 x 10(-6) to 1.35 x 10(-1). T forsythia was highly prevalent and numerous in the study groups, whereas P gingivalis was moderately frequent and less abundant, displaying 19-fold lower average levels than the former. Conclusions: The endodontic levels of P gingivalis and T forsythia, individually or in conjunction, did not display significant associations with the manifestation of pain of endodontic origin. (J Endod 2009,35:1518-1524)
Resumo:
The objective of this study was to compare the results of an on-farm test, named Somaticell, with results of electronic cell counting and for milk somatic cell count (SCC) among readers. The Somaticell test correctly determined the SCC in fresh quarter milk samples. Correlation between Somaticell and electronic enumeration of somatic cells was 0.92 and. coefficient 0.82. Using a threshold of 205,000 cells/mL, the sensitivity and specificity for determination of intramammary infections were 91.3 and 96.0%, respectively. The SCC was greater for milk samples from which major mastitis pathogens were recovered. Minor variation among readers was observed and most likely associated with the mixing procedure. However, the final analysis indicated that this variation was not significant and did not affect the amount of samples classified as having subclinical mastitis. The on-farm test evaluated in this study showed adequate capacity of determining SCC on quarter milk samples and may be considered as an alternative for on-farm detection of subclinical mastitis.
Resumo:
The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on kippered beef was evaluated. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each three- to six-strain pathogen cocktail at ca. 6.0 log CFU per piece and stored at 4, 10, 21, or 30 degrees C for up to 28 days in each of two trials. When kippered beef was inoculated with E coli O157:H7, Salmonella Typhimurium, or L. monocytogenes and stored at 4, 10, 2 1, or 30 degrees C for up to 28 days, pathogen numbers decreased ca. 0.4 to 0.9, 1.0 to 1.8, 3.0 to >= 5.25, and >= 5.0 to 5.25 log CFU per piece, respectively. Average D-values for E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes stored at 4 to 30 degrees C for 28 days were ca. 41 to 4.6, 40.8 to 5.3, and 29.5 to 4.3 days, respectively. As expected, the higher the storage temperature, the greater the level and rate of inactivation for all three pathogens. These data establish that kippered beef does not provide an environment conducive to proliferation of these pathogens.
Resumo:
Biological sources for the control of plant pathogenic fungi remain an important objective for sustainable agricultural practices. Actinomycetes are used extensively in the pharmaceutical industry and agriculture owing to their great diversity in enzyme production. In the present study, therefore, we evaluated chitinase production by endophytic actinomycetes and the potential of this for control of phytopathogenic fungi. Endophytic Streptomyces were grown on minimum medium supplemented with chitin, and chitinase production was quantified. The strains were screened for any activity towards phytopathogenic fungi and oomycetes by a dual-culture in vitro assay. The correlation between chitinase production and pathogen inhibition was calculated and further confirmed on Colletotrichum sublineolum cell walls by scanning electron microscopy. This paper reports a genetic correlation between chitinase production and the biocontrol potential of endophytic actinomycetes in an antagonistic interaction with different phytopathogens, suggesting that this control could occur inside the host plant. A genetic correlation between chitinase production and pathogen inhibition was demonstrated. Our results provide an enhanced understanding of endophytic Streptomyces and its potential as a biocontrol agent. The implications and applications of these data for biocontrol are discussed.