972 resultados para parameter measurement
Resumo:
Despite considerable research activity and application in treatment, the construct of craving remains poorly understood. We propose that cravings and urges are cognitive–emotional events in time, characterised by frequency, duration, intensity and salience. Commonly used measures of alcohol craving are reviewed, and their strengths and weaknesses identified. Most measures confound craving with behaviours, or with separable cognitive phenomena such as expectancies, intentions, or perceived behavioural control. These confounds have limited our advances in understanding the determinants and consequences of craving. Based on the criteria applied in this review, among the better performing multi-item measures are the Penn Alcohol Craving Scale and Obsessive subscale of the Obsessive–Compulsive Drinking Scale. Optimal assessment strategies are likely to involve daily assessments of peak intensity of cravings, desires or urges and of the frequency and duration of craving episodes. Of particular interest are measures of intensity at times when individuals are at risk of drinking or of other functional impacts from craving.
Resumo:
Vertical displacements are one of the most relevant parameters for structural health monitoring of bridges in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurements using curvature measurements is proposed. In addition, with the successful development of FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full- scale bridge was conducted. It shows that both of the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Besides, the approaches are feasible to implement for bridges under various loading. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. A beam loading test was conducted to determine vertical displacements using FBG strain sensors and tilt sensors. The discrepancies as compared with dial gauges reading using the curvature and inclination approaches are 0.14mm (1.1%) and 0.41mm (3.2%), respectively. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
All civil and private aircraft are required to comply with the airworthiness standards set by their national airworthiness authority and throughout their operational life must be in a condition of safe operation. Aviation accident data shows that over twenty percent of all fatal accidents in aviation are due to airworthiness issues, specifically aircraft mechanical failures. Ultimately it is the responsibility of each registered operator to ensure that their aircraft remain in a condition of safe operation, and this is done through both effective management of airworthiness activities and the effective program governance of safety outcomes. Typically, the projects within these airworthiness management programs are focused on acquiring, modifying and maintaining the aircraft as a capability supporting the business. Program governance provides the structure through which the goals and objectives of airworthiness programs are set along with the means of attaining them. Whilst the principal causes of failures in many programs can be traced to inadequate program governance, many of the failures in large scale projects can have their root causes in the organisational culture and more specifically in the organisational processes related to decision-making. This paper examines the primary theme of project and program based enterprises, and introduces a model for measuring organisational culture in airworthiness management programs using measures drawn from 211 respondents in Australian airline programs. The paper describes the theoretical perspectives applied to modifying an original model to specifically focus it on measuring the organisational culture of programs for managing airworthiness; identifying the most important factors needed to explain the relationship between the measures collected, and providing a description of the nature of these factors. The paper concludes by identifying a model that best describes the organisational culture data collected from seven airworthiness management programs.
Resumo:
This paper reports a study that explored a new construct: ‘climate of fear’. We hypothesised that climate of fear would vary across work sites within organisations, but not across organisations. This is in contrast a to measures of organisational culture, which were expected to vary both within and across organisations. To test our hypotheses, we developed a new 13-item measure of perceived fear in organisations and tested it in 20 sites across two organisations (N ≡ 209). Culture variables measured were innovative leadership culture, and communication culture. Results were that climate of fear did vary across sites in both organisations, while differences across organisations were not significant, as we anticipated. Organisational culture, however, varied between the organisations, and within one of the organisations. The climate of fear scale exhibited acceptable psychometric properties
Resumo:
The future emergence of many types of airborne vehicles and unpiloted aircraft in the national airspace means collision avoidance is of primary concern in an uncooperative airspace environment. The ability to replicate a pilot’s see and avoid capability using cameras coupled with vision based avoidance control is an important part of an overall collision avoidance strategy. But unfortunately without range collision avoidance has no direct way to guarantee a level of safety. Collision scenario flight tests with two aircraft and a monocular camera threat detection and tracking system were used to study the accuracy of image-derived angle measurements. The effect of image-derived angle errors on reactive vision-based avoidance performance was then studied by simulation. The results show that whilst large angle measurement errors can significantly affect minimum ranging characteristics across a variety of initial conditions and closing speeds, the minimum range is always bounded and a collision never occurs.
Resumo:
Basing on the character that Fiber Bragg Grating (FBG) is sensitive to both temperature and strain, by using Al and Fe-Ni alloy’s bimetal structure, we successfully design and manufacture a high accuracy FBG temperature sensor for earthquake premonition. Furthermore, we analyze the accuracy of the FBG sensors with enhanced sensitivity for the first time, and get its accuracy is up to ±0.05℃ with highest resolution ever in all FBG temperature sensors (0.0014℃/pm). This work experimentally proves the feasibility of using FBG in the earthquake premonition monitoring, and builds the foundation for the application of optic technology in earthquake premonition monitoring.
Resumo:
The existence of the Macroscopic Fundamental Diagram (MFD), which relates network space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. The key requirements for the well-defined MFD is the homogeneity of the area wide traffic condition, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take drivers’ behaviour under real time information provision into account, which has a significant impact on the shape of the MFD. This research aims to demonstrate the impact of drivers’ route choice behaviour on network performance by employing the MFD as a measurement. A microscopic simulation is chosen as an experimental platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers as well as by taking different route choice parameters, various scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance and the MFD shape. This study confirmed and addressed the impact of information provision on the MFD shape and highlighted the significance of the route choice parameter setting as an influencing factor in the MFD analysis.
Resumo:
All civil and private aircraft are required to comply with the airworthiness standards set by their national airworthiness authority and throughout their operational life must be in a condition of safe operation. Aviation accident data shows that over 20% of all fatal accidents in aviation are due to airworthiness issues, specifically aircraft mechanical failures. Ultimately it is the responsibility of each registered operator to ensure that their aircraft remain in a condition of safe operation, and this is done through both effective management of airworthiness activities and the effective programme governance of safety outcomes. Typically, the projects within these airworthiness management programmes are focused on acquiring, modifying and maintaining the aircraft as a capability supporting the business. Programme governance provides the structure through which the goals and objectives of airworthiness programmes are set along with the means of attaining them. Whilst the principal causes of failures in many programmes can be traced to inadequate programme governance, many of the failures in large-scale projects can have their root causes in the organizational culture and more specifically in the organizational processes related to decision-making. This paper examines the primary theme of project and programme-based enterprises, and introduces a model for measuring organizational culture in airworthiness management programmes using measures drawn from 211 respondents in Australian airline programmes. The paper describes the theoretical perspectives applied to modifying an original model to specifically focus it on measuring the organizational culture of programmes for managing airworthiness; identifying the most important factors needed to explain the relationship between the measures collected, and providing a description of the nature of these factors. The paper concludes by identifying a model that best describes the organizational culture data collected from seven airworthiness management programmes.
Resumo:
The International Classification of Functioning, Disability and Health (ICF) assumes a biopsychosocial basis for disability and provides a framework for understanding how environmental factors contribute to the experience of disability. To determine the utility of prevalent disability assessment instruments, the authors examined the extent to which a range of such instruments addressed the impact of environmental factors on the individual and whether the instruments designed for different disability groups focused differentially on the environment. Items from 20 widely used disability assessment instruments were linked to the five chapters of the ICF environment component using standardized classification rules. Nineteen of the 20 instruments reviewed measured the environment to varying degrees. It was determined that environmental factors from the Natural Environment and Attitudes chapters were not well accommodated by the majority of instruments. Instruments developed for people with intellectual disabilities had the greatest environmental coverage. Only one instrument provided a relatively comprehensive and economical account of environmental barriers. The authors conclude that ICF classification of environmental factors provides a valuable resource for evaluating the environmental content of existing disability-related instruments, and that it may also provide a useful framework for revising instruments in use and for developing future disability assessment instruments.
Resumo:
Neutron Compton scattering (NCS) measurements of the anisotropy of the momentum distribution and the mean Laplacian of the interatomic potential ∇2V have been performed using electron volt neutrons, with wave vector transfers between 24 Å−1 and 98 Å−1. The measured momentum distribution of the atoms displays significantly more anisotropy than a calculation using a model density of states. We have observed anisotropies in ∇2V for the first time. The results suggest that the atomic potential is harmonic within the graphite planes, but anharmonic for vibrations perpendicular to the planes.
Resumo:
While academic interest in destination branding has been gathering momentum since the field commenced in the late 1990s, one important gap in this literature that has received relatively little attention to date is the measurement of destination brand performance. This paper sets out one method for assessing the performance of a destination brand over time. The intent is to present an approach that will appeal to marketing practitioners, and which is also conceptually sound. The method is underpinned by Decision Set Theory and the concept of Consumer-Based Brand Equity (CBBE), while the key variables mirror the branding objectives used by many destination marketing organisations (DMO). The approach is demonstrated in this paper to measure brand performance for Australia in the New Zealand market. It is suggested the findings provide indicators of both i) the success of previous marketing communications, and ii) future performance, which can be easily communicated to a DMO’s stakeholders.
Resumo:
Currently there are little objective parameters that can quantify the success of one form of prostate surgical removal over another. Accordingly, at Old Dominion University (ODU) we have been developing a process resulting in the use of software algorithms to assess the coverage and depth of extra-capsular soft tissue removed with the prostate by the various surgical approaches. Parameters such as the percent of capsule that is bare of soft tissue and where present the depth and extent of coverage have been assessed. First, visualization methods and tools are developed for images of prostate slices that are provided to ODU by the Pathology Department at Eastern Virginia Medical School (EVMS). The visualization tools interpolate and present 3D models of the prostates. Measurement algorithms are then applied to determine statistics about extra-capsular tissue coverage. This paper addresses the modeling, visualization, and analysis of prostate gland tissue to aid in quantifying prostate surgery success. Particular attention is directed towards the accuracy of these measurements and is addressed in the analysis discussions.
Resumo:
There are no population studies of prevalence or incidence of child maltreatment in Australia. Child protection data gives some understanding but is restricted by system capacity and definitional issues across jurisdictions. Child protection data currently suggests that numbers of reports are increasing yearly, and the child protection system then becomes focussed on investigating all reports and diluting available resources for those children who are most in need of intervention. A public health response across multiple agencies enables responses to child safety across the entire population. All families are targeted at the primary level; examples include ensuring all parents know the dangers of shaking a baby or teaching children to say no if a situation makes them uncomfortable. The secondary level of prevention targets families with a number of risk factors, for example subsidised child care so children aren't left unsupervised after school when both parents have to be at work or home visiting for drug-addicted parents to ensure children are cared for. The tertiary response then becomes the responsibility of the child protection system and is reserved for those children where abuse and neglect are identified. This model requires that child safety is seen in a broader context than just the child protection system, and increasingly health professionals are being identified as an important component in the public health framework. If all injury is viewed as preventable and considered along a continuum of 'accidental' through to 'inflicted', it becomes possible to conceptualise child maltreatment in an injury context. Parental intent may not be to cause harm to the child, but by lack of insight or concern about risk, the potential for injury is high. The mechanisms for unintentional and intentional injury overlap and some suggest that by segregating child abuse (with the possible exception of sexual abuse) from unintentional injury, child abuse is excluded from the broader injury prevention initiative that is gaining momentum in the community. This research uses a public health perspective, specifically that of injury prevention, to consider the problem of child abuse. This study employed a mixed method design that incorporates secondary data analysis, data linkage and structured interviews of different professional groups. Datasets from the Queensland Injury Surveillance Unit (QISU) and The Department of Child Safety (DCS) were evaluated. Coded injury data was grouped according to intent of injury according to those with a code that indicated the ED presentation was due to child abuse, a code indicating that the injury was possibly due to abuse or, in the third group, the intent code indicated that the injury was unintentional and not due to abuse. Primary data collection from ED records was undertaken and information recoded to assess reliability and completeness. Emergency department data (QISU) was linked to Department of Child Safety Data to examine concordance and data quality. Factors influencing the collection and collation of these data were identified through structured interview methodology and analysed using qualitative methods. Secondary analysis of QISU data indicated that codes lacking specific information on the injury event were more likely to also have an intent code indicating abuse than those records where there was specific information on the injury event. Codes for abuse appeared in only 1.2% of the 84,765 records analysed. Unintentional injury was the most commonly coded intent (95.3%). In the group with a definite abuse code assigned at triage, 83% linked to a record with DCS and cases where documentation indicated police involvement were significantly more likely to be associated with a DCS record than those without such documentation. In those coded with an unintentional injury code, 22% linked to a DCS record with cases assigned an urgent triage category more likely to link than those with a triage category for resuscitation and children who presented to regional or remote hospitals more likely to link to a DCS record than those presenting to urban hospitals. Twenty-nine per cent of cases with a code indicating possible abuse linked to a DCS record. In documentation that indicated police involvement in the case, a code for unspecified activity when compared to cases with a code indicating involvement in a sporting activity and children less than 12 months of age compared to those in the 13-17 year old age group were all variables significantly associated with linkage to a DCS record. Only 13% of records contained documentation indicating that child abuse and neglect were considered in the diagnosis of the injury despite almost half of the sample having a code of abuse or possible abuse. Doctors and nurses were confident in their knowledge of the process of reporting child maltreatment but less confident about identifying child abuse and neglect and what should be reported. Many were concerned about implications of reporting, for the child and family and for themselves. A number were concerned about the implications of not reporting, mostly for the wellbeing of the child and a few in terms of their legal obligations as mandatory reporters. The outcomes of this research will help improve the knowledge of barriers to effective surveillance of child abuse in emergency departments. This will, in turn, ensure better identification and reporting practises; more reliable official statistical collections and the potential of flagging high-risk cases to ensure adequate departmental responses have been initiated.
Resumo:
Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.