956 resultados para nonstructural protein 5
Resumo:
Dissertation presented to obtain a Doctoral degree in Biology by Instituto de Tecnologia Química e Biológica
Resumo:
We have searched for Mycobacterium leprae DNA for 36kDa protein in urine using a M. leprae specific PCR technique. A limited number of 16 patients (of which 11 belonged to lepromatous leprosy and five to tuberculoid leprosy) and eight healthy individuals were included for the present study. The number of urine samples positive by PCR were 36.4% (4/11) in lepromatous patients and 40% (2/5) in tuberculoid patients. None of the samples from healthy individuals was positive. To our knowledge, the results indicate, for the first time, the presence of M. leprae DNA in urine from leprosy patients. Another important finding obtained out of the study is that amongst treated patients 66.6% (4/6) were positive whereas amongst untreated only 20% (2/10) were positive. From the present indicative data it appears that treatment improves the PCR results with urine as a sample. Thus, the approach could prove to be useful for monitoring the treatment response of individual patients and needs to be further evaluated with a large number of patients.
Resumo:
Introduction: C-reactive protein (CRP) and Bedside Index for Severity in Acute Pancreatitis (BISAP) have been used in early risk assessment of patients with AP. Objectives: We evaluated prognostic accuracy of CRP at 24 hours after hospital admission (CRP24) for in-hospital mortality (IM) in AP individually and with BISAP. Materials and Methods: This retrospective cohort study included 134 patients with AP from a Portuguese hospital in 2009---2010. Prognostic accuracy assessment used area under receiver---operating characteristic curve (AUC), continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results: Thirteen percent of patients had severe AP, 26% developed pancreatic necrosis, and 7% died during index hospital stay. AUCs for CRP24 and BISAP individually were 0.80 (95% confidence interval (CI) 0.65---0.95) and 0.77 (95% CI 0.59---0.95), respectively. No patients with CRP24 <60 mg/l died (P = 0.027; negative predictive value 100% (95% CI 92.3---100%)). AUC for BISAP plus CRP24 was 0.81 (95% CI 0.65---0.97). Change in NRI nonevents (42.4%; 95% CI, 24.9---59.9%) resulted in positive overall NRI (31.3%; 95% CI, − 36.4% to 98.9%), but IDI nonevents was negligible (0.004; 95% CI, − 0.007 to 0.014). Conclusions: CRP24 revealed good prognostic accuracy for IM in AP; its main role may be the selection of lowest risk patients.
Resumo:
Ligand K-edge XAS of an [Fe3S4]0 model complex is reported. The pre-edge can be resolved into contributions from the í2Ssulfide, í3Ssulfide, and Sthiolate ligands. The average ligand-metal bond covalencies obtained from these pre-edges are further distributed between Fe3+ and Fe2.5+ components using DFT calculations. The bridging ligand covalency in the [Fe2S2]+ subsite of the [Fe3S4]0 cluster is found to be significantly lower than its value in a reduced [Fe2S2] cluster (38% vs 61%, respectively). This lowered bridging ligand covalency reduces the superexchange coupling parameter J relative to its value in a reduced [Fe2S2]+ site (-146 cm-1 vs -360 cm-1, respectively). This decrease in J, along with estimates of the double exchange parameter B and vibronic coupling parameter ì2/k-, leads to an S ) 2 delocalized ground state in the [Fe3S4]0 cluster. The S K-edge XAS of the protein ferredoxin II (Fd II) from the D. gigas active site shows a decrease in covalency compared to the model complex, in the same oxidation state, which correlates with the number of H-bonding interactions to specific sulfur ligands present in the active site. The changes in ligand-metal bond covalencies upon redox compared with DFT calculations indicate that the redox reaction involves a two-electron change (one-electron ionization plus a spin change of a second electron) with significant electronic relaxation. The presence of the redox inactive Fe3+ center is found to decrease the barrier of the redox process in the [Fe3S4] cluster due to its strong antiferromagnetic coupling with the redox active Fe2S2 subsite.
Resumo:
Although a variety of nanoparticles (NPs) functionalized with amphotericin B, an antifungal agent widely used in the clinic, have been studied in the last years their cytotoxicity profile remains elusive. Here we show that human endothelial cells take up high amounts of silica nanoparticles (SNPs) conjugated with amphotericin B (AmB) (SNP-AmB) (65.4 12.4 pg of Si per cell) through macropinocytosis while human fibroblasts internalize relatively low amounts (2.3 0.4 pg of Si per cell) because of their low capacity for macropinocytosis. We further show that concentrations of SNP-AmB and SNP up to 400 mg/mL do not substantially affect fibroblasts. In contrast, endothelial cells are sensitive to low concentrations of NPs (above 10 mg/mL), in particular to SNP-AmB. This is because of their capacity to internalize high concentration of NPs and high sensitivity of their membrane to the effects of AmB. Low-moderate concentrations of SNP-AmB (up to 100 mg/mL) induce the production of reactive oxygen species (ROS), LDH release, high expression of pro-inflammatory cytokines and chemokines (IL-8, IL-6, G-CSF, CCL4, IL-1b and CSF2) and high expression of heat shock proteins (HSPs) at gene and protein levels. High concentrations of SNP-AmB (above 100 ug/mL) disturb membrane integrity and kill rapidly human cells(60% after 5 h). This effect is higher in SNP-AmB than in SNP.
Resumo:
SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index Ͱ5; 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease.
Resumo:
Inorganic Chemistry 50(21):10600-7
Resumo:
Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC) and sub-minimal inhibitory concentration (sub-MIC) of the butanolic extract (BUTE) of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1), amino acid metabolism (ILV5, PDC11) and protein synthesis (ASC1) pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides), it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds.
Resumo:
Biochemistry. 2009 Feb 10;48(5):873-82. doi: 10.1021/bi801773t.
Resumo:
Adult mice were submitted to different degrees of protein restriction for five weeks (4.75, 9.5,14.25 and 19% of protein in isocaloric diets with normal content of mineral and vitamins), being subsequently infected with two strains of Trypanosoma cruzi: 10(5) trypomastigotes of Y strain or 14(5) trypomastigotes of CL strain. The same diet was maintained for all animals and the infection wasfollowed up by evaluation of blood parasites, mortality and intensity of lesions in the heart and skeleton muscle. Only severe protein restriction (4.75%) induced decrease in resistance to the infection with both the Y and CL strains of T. cruzi, which resulted in higher parasitemia and mortality. The inflammatory lesions in heart and skeleton muscle were less extensive in groups with severe protein restriction despite the increased number of parasite in muscle cells. Depression of immune mechanisms could be responsiblefor the reduced resistance and reduced inflammatory reaction after T. cruzi infection in severely protein restricted animals.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Biotecnologia, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Similarities and differences in antigenic humoral responses and electrophoretic patterns between Capillaria hepatica and pig-serum were investigated as a contribution to the understanding of hepatic fibrosis induced by the parenteral administration of foreign proteins. Only two out of 10 rats receiving repeated intraperitoneal injections of an extract of Capillaria hepatica-infected mouse liver presented septal hepatic fibrosis (20%). Under the same experimental conditions, 4 out of 9 rats (44.4%) developed septal fibrosis following whole pig-serum administration. Injections of normal mouse liver extracts did not result in hepatic fibrosis. Since a 100% septal fibrosis rate is observed in experimentally Capillaria hepatica-infected rats, it appeared that Capillaria hepatica products continuously released from inside the liver creates a much more effective fibrosis inducing mechanism than the parenteral administration of such factors. Thus, repeated peritoneal administration of a foreign protein to rats would not reveal the full fibrogenic potential it may have under natural conditions.
Resumo:
Many viruses have developed numerous strategies to recruit and take advantage of cellular protein degradation pathways to evade the cellular viral immune system. One such virus is the Kaposi´s Sarcoma associated herpesvirus (KSHV), first discovered in Kaposi´s Sarcoma lesions found in AIDS patients. Latency-Associated Nuclear Antigen (LANA) is a KSHV multifunctional protein responsible for tethering viral DNA to the chromosome ensuring maintenance and segregation of the viral genome during cell division. Besides its main role of viral maintenance, LANA also physically interacts with several host proteins to modulate cell functions. One such function is to recruit the EC5S ubiquitin-ligase complex by interacting with Elongin BC complex and Cullin 5 protein, which in turn ubiquitinate substrates such as NF-κB and p53 to allow persistent viral infection. Like any other post-translation modifications, ubiquitination is reversible through deubiquitination enzymes (DUBs). LANA also interacts with ubiquitin specific protease 7 (USP7), a deubiquitination enzyme involved in regulation of several proteins including p53. Interaction with USP7 is made through a conserved peptide motif, which is also present in LANA. This work addresses the role of LANA in the recruitment and modulation of the ubiquitination and deubiquitination pathways. Despite the continued efforts in uncovering new LANA interacting partners to form a functional EC5S ubiquitin-ligase complex, only MHV-68 LANA interacted directly with Elongin BC, other interactions were not direct and may require a linker protein. On the other hand, LANA interaction with USP7 was able to be analysed by X-ray structure determination. In addition to a conserved P/AxxS motif, a novel Glutamine (Gln) residue from KSHV LANA was shown to make a specific interaction with USP7. This Gln residue is also present in other herpesvirus protein and hence it might be a conserved motif within herpesviruses.
Resumo:
Fish meal free diets were formulated to contain graded protein levels as 25% (diet 1), 30% (diet 2), 35% (diet 3) and 40% (diet 4). The diets were fed to tambaqui juveniles (Colossoma macropomum) (46.4 ± 6.3g) in randomly designed recirculating systems for 60 days, to determine the optimum protein requirement for the fish. The final weight of the fish, weight gain (28.1, 28.5, 32.2, 28.0g) and specific growth rate increased (P>0.05) consistently with increasing dietary protein up to treatment with 35% protein diet and then showed a declining trend. Feed intake followed the same trend resulting in best feed efficiency (62.5%) in fish fed diet with 35% protein. Similarly, the protein intake increased significantly with increasing dietary protein levels and reduced after the fish fed with 35% protein; while protein efficiency ratio (2.28, 1.99, 1.87, 1.74) decreased with increasing dietary protein levels. Carcass ash and protein had linear relationship with dietary protein levels while the lipid showed a decreasing trend. Ammonia content (0.68, 0.73, 0.81, 1.21 mg L-1) of the experimental waters also increased (P<0.05) with increasing protein levels while pH, dissolved oxygen and temperature remained fairly constant without any clear pattern of inclination. Broken-line estimation of the weight gain indicated 30% protein as the optimum requirement for the fish.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).