895 resultados para motor neuron disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galanin is a neuropeptide with multiple inhibitory actions on neurotransmission and memory. In Alzheimer's disease (AD), increased galanin-containing fibers hyperinnervate cholinergic neurons within the basal forebrain in association with a decline in cognition. We generated transgenic mice (GAL-tg) that overexpress galanin under the control of the dopamine β-hydroxylase promoter to study the neurochemical and behavioral sequelae of a mouse model of galanin overexpression in AD. Overexpression of galanin was associated with a reduction in the number of identifiable neurons producing acetylcholine in the horizontal limb of the diagonal band. Behavioral phenotyping indicated that GAL-tgs displayed normal general health and sensory and motor abilities; however, GAL-tg mice showed selective performance deficits on the Morris spatial navigational task and the social transmission of food preference olfactory memory test. These results suggest that elevated expression of galanin contributes to the neurochemical and cognitive impairments characteristic of AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is growing evidence that oxidative stress and mitochondrial respiratory failure with attendant decrease in energy output are implicated in nigral neuronal death in Parkinson disease (PD). It is not known, however, which cellular elements (neurons or glial cells) are major targets of oxygen-mediated damage. 4-Hydroxy-2-nonenal (HNE) was shown earlier to react with proteins to form stable adducts that can be used as markers of oxidative stress-induced cellular damage. We report here results of immunochemical studies using polyclonal antibodies directed against HNE-protein conjugates to label the site of oxidative damage in control subjects (ages 18-99 years) and seven patients that died of PD (ages 57-78 years). All the nigral melanized neurons in one of the midbrain sections were counted and classified into three groups according to the intensity of immunostaining for HNE-modified proteins--i.e., no staining, weak staining, and intensely positive staining. On average, 58% of nigral neurons were positively stained for HNE-modified proteins in PD; in contrast only 9% of nigral neurons were positive in the control subjects; the difference was statistically significant (Mann-Whitney U test; P < 0.01). In contrast to the substantia nigra, the oculomotor neurons in the same midbrain sections showed no or only weak staining for HNE-modified proteins in both PD and control subjects; young control subjects did not show any immunostaining; however, aged control subjects showed weak staining in the oculomotor nucleus, suggesting age-related accumulation of HNE-modified proteins in the neuron. Our results indicate the presence of oxidative stress within nigral neurons in PD, and this oxidative stress may contribute to nigral cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The survival of cultured mouse hippocampal neurons was found to be greatly enhanced by micromolar concentrations of the excitatory neurotransmitter glutamate. Blockade of kainate/AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptors increased the rate of neuron death, suggesting that endogenous glutamate in the cultures promotes survival. Addition of glutamate (0.5-1 microM) further increased neuron survival, whereas glutamate in excess of 20 microM resulted in increased death. Thus, the survival vs. glutamate dose-response relation is bell-shaped with an optimal glutamate concentration near 1 microM. We found that hippocampal neurons from mice with the genetic defect trisomy 16 (Ts16) died 2-3 times faster than normal (euploid) neurons. Moreover, glutamate, at all concentrations tested, failed to increase survival of Ts16 neurons. In contrast, the neurotrophic polypeptide basic fibroblast growth factor did increase the survival of Ts16 and euploid neurons. Ts16 is a naturally occurring mouse genetic abnormality, the human analog of which (Down syndrome) leads to altered brain development and Alzheimer disease. These results demonstrate that the Ts16 genotype confers a defect in the glutamate-mediated survival response of hippocampal neurons and that this defect can contribute to their accelerated death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is frequently associated with gastrointestinal (GI) symptoms, mostly represented by abdominal distension, constipation and defecatory dysfunctions. Despite GI dysfunctions have a major impact on the clinical picture of PD, there is currently a lack of information on the neurochemical, pathological and functional correlates of GI dysmotility associated with PD. Moreover, there is a need of effective and safe pharmacological therapies for managing GI disturbances in PD patients. The present research project has been undertaken to investigate the relationships between PD and related GI dysfunctions by means of investigations in an animal model of PD induced by intranigral injection of 6-hydroxydopamine (6-OHDA). The use of the 6-OHDA experimental model of PD in the present program has allowed to pursue the following goals: 1) to examine the impact of central dopaminergic denervation on colonic excitatory cholinergic and tachykininergic neuromotility by means of molecular, histomorphologic and functional approaches; 2) to elucidate the role of gut inflammation in the onset and progression of colonic dysmotility associated with PD, characterizing the degree of inflammation and oxidative damage in colonic tissues, as well as identifying the immune cells involved in the production of pro-inflammatory cytokines in the gut; 3) to evaluate the impact of chronic treatment with L-DOPA plus benserazide on colonic neuromuscular activity both in control and PD animals. The results suggest that central nigrostriatal dopaminergic denervation is associated with an impaired excitatory cholinergic neurotransmission and an enhanced tachykininergic control, resulting in a dysregulated smooth muscle motor activity, which likely contributes to the concomitant decrease in colonic transit rate. These motor alterations might result from the occurrence of a condition of gut inflammation associated with central intranigral denervation. The treatment with L-DOPA/BE following central dopaminergic neurodegeneration can restore colonic motility, likely through a normalization of the cholinergic enteric neurotransmission, and it can also improve the colonic inflammation associated with central dopaminergic denervation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a neuro-degenerative disorder, the second most common after Alzheimer's disease. After diagnosis, treatments can help to relieve the symptoms, but there is no known cure for PD. PD is characterized by a combination of motor and no-motor dysfunctions. Among the motor symptoms there is the so called Freezing of Gait (FoG). The FoG is a phenomenon in PD patients in which the feet stock to the floor and is difficult for the patient to initiate movement. FoG is a severe problem, since it is associated with falls, anxiety, loss of mobility, accidents, mortality and it has substantial clinical and social consequences decreasing the quality of life in PD patients. Medicine can be very successful in controlling movements disorders and dealing with some of the PD symptoms. However, the relationship between medication and the development of FoG remains unclear. Several studies have demonstrated that visual or auditory rhythmical cuing allows PD patients to improve their motor abilities. Rhythmic auditory stimulation (RAS) was shown to be particularly effective at improving gait, specially with patients that manifest FoG. While RAS allows to reduce the time and the effects of FoGs occurrence in PD patients after the FoG is detected, it can not avoid the episode due to the latency of detection. An improvement of the system would be the prediction of the FoG. This thesis was developed following two main objectives: (1) the finding of specifics properties during pre FoG periods different from normal walking context and other walking events like turns and stops using the information provided by the inertial measurements units (IMUs) and (2) the formulation of a model for automatically detect the pre FoG patterns in order to completely avoid the upcoming freezing event in PD patients. The first part focuses on the analysis of different methods for feature extraction which might lead in the FoG occurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schistosomes are parasitic blood flukes, responsible for significant human disease in tropical and developing nations. Here we review information on the organization of the cytoskeleton and associated motor proteins of schistosomes, with particular reference to the organization of the syncytial tegument, a unique cellular adaptation of these and other neodermatan flatworms. Extensive EST databases show that the molecular constituents of the cytoskeleton and associated molecular systems are likely to be similar to those of other eukaryotes, although there are potentially some molecules unique to schistosomes and platyhelminths. The biology of some components, particular those contributing to host-parasite interactions as well as chemotherapy and immunotherapy are discussed. Unresolved questions in relation to the structure and function of the tegument relate to dynamic organization of the syncytial layer. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In relation to motor control, the basal ganglia have been implicated in both the scaling and focusing of movement. Hypokinetic and hyperkinetic movement disorders manifest as a consequence of overshooting and undershooting GPi (globus pallidus internus) activity thresholds, respectively. Recently, models of motor control have been borrowed to translate cognitive processes relating to the overshooting and undershooting of GPi activity, including attention and executive function. Linguistic correlates, however, are yet to be extrapolated in sufficient detail. The aims of the present investigation were to: (1) characterise cognitive-linguistic processes within hypokinetic and hyperkinetic neural systems, as defined by motor disturbances; (2) investigate the impact of surgically-induced GPi lesions upon language abilities. Two Parkinsonian cases with opposing motor symptoms (akinetic versus dystonic/dyskinetic) served as experimental subjects in this research. Assessments were conducted both prior to as well as 3 and 12 months following bilateral posteroventral pallidotomy (PVP). Reliable changes in performance (i.e. both improvements and decrements) were typically restricted to tasks demanding complex linguistic operations across subjects. Hyperkinetic motor symptoms were associated with an initial overall improvement in complex language function as a consequence of bilateral PVP, which diminished over time, suggesting a decrescendo effect relative to surgical beneficence. In contrast, hypokinetic symptoms were associated with a more stable longitudinal linguistic profile, albeit defined by higher proportions of reliable decline versus improvement in postoperative assessment scores. The above findings endorsed the integration of the GPi within cognitive mechanisms involved in the arbitration of complex language functions. In relation to models of motor control, 'focusing' was postulated to represent the neural processes underpinning lexical-semantic manipulation, and 'scaling' the potential allocation of cognitive resources during the mediation of high-level linguistic tasks. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the effects of neurosurgical management of Parkinson's disease (PD), including the procedures of pallidotomy, thalamotomy, and deep-brain stimulation (DBS) on perceptual speech characteristics, speech,, intelligibility and oromotor function in a group of 22 participants with PD. The surgical participant group was compared with a group of 25 non-neurologically impaired individuals matched for age and sex. In addition, the study investigated 16 participants with PD who did not undergo neurosurgical management to control for disease progression. Results revealed that neurosurgical intervention did not significantly change the surgical participants' perceptual speech dimensions or oromotor function despite significant postoperative improvements in ratings of general motor function and disease severity. Reasons why neurosurgical intervention resulted in dissimilar outcomes with respect to participants' perceptual speech dimensions and general motor function are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of posteroventral pallidotomy on perceptual and physiological measures of articulatory function and speech intelligibility in Parkinson disease (M). The study examined 11 participants with M who underwent posteroventral pallidotomy Physiological measures of hp and tongue function. and perceptual measures of speech intelligibility were obtained prepallidotomy and 3 months postpallidotomy. The participants with PD were also assessed on the Unified Parkinsons Disease Rating Scale (UPDRS Part III) In addition, the study included a group of 16 participants with PD who did not undergo pallidotomy and a group of 30 nonneurologically impaired participants. Analyses of physiological articulatory function and speech intelligibility did not reveal corresponding improvements in motor speech function as observed in general limb motor function postpallidotomy. Overall, individual reliable change analyses revealed that the majority of surgical PD participants demonstrated no reliable change on perceptual and physiological measures of articulation. The cur rent study revealed preliminary evidence that articulatury function and speech intelligibility did not change following posteroventral pallidotomy in a group of individuals with PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Difficulty performing more than one task at a time is common in people with Parkinson's disease, resulting in interference with one or both tasks. While studies have shown that greater interference in gait occurs with more complex concurrent tasks, the impact of the type of concurrent task is unclear in the Parkinson's population. Thus the first purpose of this study was to investigate the effect of the concurrent task (calculation, language, or motor) on gait in people with Parkinson's disease. As visual cues are commonly used to aid stride regulation in people with Parkinson's disease, the second purpose of this study was to determine whether this method of increasing stride length was still effective if other tasks were performed simultaneously. Sixteen patients with Parkinson's disease and 16 gender- and age-matched controls performed six cognitive and motor concurrent tasks when seated, walking 10 m, and walking over visual cues. Stride length decreased in people with Parkinson's disease when performing the concurrent calculation and language tasks, but not with the motor task. The language task was more complex than the calculation task, thus the effect was not due to task complexity alone. Visual cues were effective in improving stride length whist maintaining velocity in people with Parkinson's disease, even when performed under dual task conditions. These findings highlight the importance of the task when assessing and retraining dual tasking during gait, and suggest that retraining dual tasking can occur whilst simultaneously using visual aids to regulate stride length.