928 resultados para minimally processed
Resumo:
A Micro-opto-mechanical systems (MOMS) based technology for the fabrication of ultrasonic probes on optical fiber is presented. Thanks to the high miniaturization level reached, the realization of an ultrasonic system constituted by ultrasonic generating and detecting elements, suitable for minimally invasive applications or Non Destructive Evaluation (NDE) of materials at high resolution, is demonstrated. The ultrasonic generation is realized by irradiating a highly absorbing carbon film patterned on silicon micromachined structures with a nanosecond pulsed laser source, generating a mechanical shock wave due to the thermal expansion of the film induced by optical energy conversion into heat. The short duration of the pulsed laser, together with an appropriate emitter design, assure high frequency and wide band ultrasonic generation. The acoustic detection is also realized on a MOMS device using an interferometric receiver, fabricated with a Fabry-Perot optical cavity realized by means of a patterned SU-8 and two Al metallization levels. In order to detect the ultrasonic waves, the cavity is interrogated by a laser beam measuring the reflected power with a photodiode. Various issues related to the design and fabrication of these acoustic probes are investigated in this thesis. First, theoretical models are developed to characterize the opto-acoustic behavior of the devices and estimate their expected acoustic performances. Tests structures are realized to derive the relevant physical parameters of the materials constituting the MOMS devices and determine the conditions theoretically assuring the best acoustic emission and detection performances. Moreover, by exploiting the models and the theoretical results, prototypes of acoustic probes are designed and their fabrication process developed by means of an extended experimental activity.
Resumo:
Organic field-effect transistors (OFETs) are becoming interesting owing to their prospective application as cheap, bendable and light weight electronic devices rnlike flexible displays. However, the bottleneck of OFETs is their typically low charge carrier mobilities. An effective and crucial route towards circumventing thisrnhurdle is the control of organic semiconductor thin film morphology which critically determine charge carrier transport. In this work, the influence of film morphologyrnis highlighted together with its impact on OFET transistor performance.
Resumo:
The country-of-origin is the “nationality” of a food when it goes through customs in a foreign country, and is a “brand” when the food is for sale in a foreign market. My research on country-of-origin labeling (COOL) started from a case study on the extra virgin olive oil exported from Italy to China; the result shows that asymmetric and imperfect origin information may lead to market inefficiency, even market failure in emerging countries. Then, I used the Delphi method to conduct qualitative and systematic research on COOL; the panel of experts in food labeling and food policy was composed of 19 members in 13 countries; the most important consensus is that multiple countries of origin marking can provide accurate information about the origin of a food produced by two or more countries, avoiding misinformation for consumers. Moreover, I enhanced the research on COOL by analyzing the rules of origin and drafting a guideline for the standardization of origin marking. Finally, from the perspective of information economics I estimated the potential effect of the multiple countries of origin labeling on the business models of international trade, and analyzed the regulatory options for mandatory or voluntary COOL of main ingredients. This research provides valuable insights for the formulation of COOL policy.
Resumo:
Most quark actions in lattice QCD encounter difficulties with chiral sym-rnmetry and its spontaneous breakdown. Minimally doubled fermions (MDF)rnare a category of strictly local chiral lattice fermions, whose continuum limitrnreproduces two degenerate quark flavours. The two poles of their Dirac ope-rnrator are aligned such that symmetries under charge conjugation or reflectionrnof one particular direction are explictly broken at finite lattice spacing. Pro-rnperties of MDF are scrutinised with regard to broken symmetry and mesonrnspectrum to discern their suitability for numerical studies of QCD.rnrnInteractions induce anisotropic operator mixing for MDF. Hence, resto-rnration of broken symmetries in the continuum limit requires three coun-rnterterms, one of which is power-law divergent. Counterterms and operatorrnmixing are studied perturbatively for two variants of MDF. Two indepen-rndent non-perturbative procedures for removal of the power-law divergencernare developed by means of a numerical study of hadronic observables forrnone variant of MDF in quenched approximation. Though three out of fourrnpseudoscalar mesons are affected by lattice artefacts, the spectrum’s conti-rnnuum limit is consistent with two-flavour QCD. Thus, suitability of MDF forrnnumerical studies of QCD in the quenched approximation is demonstrated.
Resumo:
Non-contrast post-mortem computed tomography (pm-CT) is useful in the evaluation of bony pathologies, whereas minimally invasive pm-CT-angiography allows for the detection of subtle vascular lesions. We present a case of an accidentally self-inflicted fatal bullet wound to the chest where pm-CT-angiography revealed a small laceration of the anterior interventricular branch of the left coronary artery and a tiny disruption of the right ventricle with pericardial and pleural effusion. Subsequent autopsy confirmed our radiological findings. Post-mortem CT-angiography has a great potential for the detection of vascular lesions and can be considered equivalent to autopsy for selected cases in forensic medicine.
Resumo:
We report a case of a 78-year-old female with a proximal femur fracture caused by an accidental fall who died suddenly 1h after orthopaedic prosthesis insertion. Post-mortem computed tomography (CT) scan and histological examination of samples obtained with post-mortem percutaneous needle biopsies of both lungs were performed. Analysis of the medical history and the clinical scenario immediately before death, imaging data, and biopsy histology established the cause of death without proceeding to traditional autopsy. It was determined to be acute right ventricular failure caused by massive pulmonary fat embolism. Although further research in post-mortem imaging and post-mortem tissue sampling by needle biopsies is necessary, we conclude that the use of CT techniques and percutaneous biopsy, as additional tools, can offer a viable alternative to traditional autopsy in selected cases and may increase the number of minimally invasive forensic examinations performed in the future.
Resumo:
OBJECTIVES: To develop a minimally destructive technique for removing the smear layer produced by cutting and polishing specimens of dentine prepared for use in experimental studies, e.g. on occlusion of dentinal tubules by oral health products. The aim was to avoid the damage caused by conventional techniques utilising short exposures to solutions with very low pH. METHODS: Two acetate buffers, pH 5.5, containing different concentrations of calcium and phosphate, with -log(ion activity product with respect to hydroxyapatite) (pI(HA)) of 55 or 56, were tested on slices of dentine using scanning electron microscopy (SEM). RESULTS: A solution which, from previous work, was slightly undersaturated with respect to dentine mineral, with a pI(HA) of 56, was found to remove smear layers produced by cutting and/or polishing after 15 min. However, to reliably remove debris occluding the tubules an exposure time of 2h, followed by brief ultrasonication, was necessary. After 2h treatment with this buffer, only a small amount of demineralization of the surface was detectable by SEM, while calcium and phosphorus were detectable by X-ray dispersive spectroscopy. CONCLUSION: It is possible to remove smear layers, and to open dentinal tubules, by a reasonably short exposure to an acidic buffer which is undersaturated with respect to dentine mineral.
Resumo:
To present the auditory implant manipulator, a navigation-controlled mechanical and electronic system which enables minimally invasive ('keyhole') transmastoid access to the tympanic cavity.
Resumo:
Although postmortem CT suffices for diagnosing most forms of traumatic death, the examination of natural death is, to date, very difficult and error prone. The introduction of postmortem angiography has led to improved radiologic diagnoses of natural deaths. Nevertheless, histologic changes to tissues, an important aspect in traditional examination procedures, remain obscure even with CT and CT angiography. For this reason, we examined the accuracy of a minimally invasive procedure (i.e., CT angiography combined with biopsy) in diagnosing major findings and the cause of death in natural deaths.
Resumo:
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.