995 resultados para miRNA,polyplexes,bioprinting,GGMA,chitosan,PEI-g-PEG,3D printing
Resumo:
Although vaccination is still the most cost-effective strategy for tuberculosis control, there is an urgent need for an improved vaccine. Current BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis, the most prevalent form of the disease. Targeting nasal mucosa, Mycobacterium tuberculosis infection site, will allow a simpler, less prone to risk of infection and more effective immunization against disease. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as carrier and as adjuvant, improving the elicited immune response. In this study, BCG was encapsulated in alginate and chitosan microparticles, via a mild ionotropic gelation procedure with sodium tripolyphosphate as a counterion. The particulate system developed shows effective modulation of BCG surface physicochemical properties, suitable for mucosal immunization. Intracellular uptake was confirmed by effective transfection of human macrophage cell lines.
Resumo:
Immunisation against M. tuberculosis with current available BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis. Targeting nasal mucosa is an attractive option for a more effective immunization. The delivery of BCG via the intranasal route involves overcoming barriers such as crossing the physical barrier imposed by the mucus layer and ciliar remotion, cellular uptake and intracellular trafficking by antigen presenting cells. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as vaccine carrier and adjuvant, improving the elicited immune response. In this study, different combinations of Chitosan/Alginate/TPP microparticles with BCG were produced as vaccine systems. The developed microparticle system successfully modulates BCG surface physicochemical properties and promotes effective intracellular uptake by human macrophage cell lines Preliminary immune responses were evaluated after s.c. and intranasal immunisation of BALB/c mice. BCG vaccination successfully stimulated the segregation of IgG2a and IgG1, where intranasal immunisation with chitosan/alginate particulate system efficiently elicited a more equilibrated cellular/humoral immune response.
Resumo:
Attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only currently available vaccine against tuberculosis. It is highly effective in pre-exposure immunisation against TB in children when administered by subcutaneous route to newborns. However, it does not provide permanent protection in adults. In this work, polymeric chitosan-alginate microparticles have been evaluated as potential nasal delivery systems and mucosal adjuvants for live attenuated BCG. Chitosan (CS) has been employed as adjuvant and mucosal permeation-enhancer, and, together with alginate (ALG), as additive to enhance BCG-loaded microparticles (MPs) cellular uptake in a human monocyte cell line, by particle surface modification. The most suitable particles were used for vaccine formulation and evaluation of immune response following intranasal immunisation of BALB/c mice.
Resumo:
Introduction: 188Re is a promising radionuclide for metabolic therapy because of the emission of high energy beta-particles. The development of watersoluble bone-seeking polymers such as PEI-MP (polyethyleneimine, functionalised with methylphosphonate-groups) that might be labeled with 188Re are recent approaches, with a strong potential for bone cancer treatment. The aim of this study was to evaluate the efficacy of 188Re-PEI-MP, as therapeutic agent for osteosarcoma, through in vitro and in vivo models.
Resumo:
The present study aimed to develop a pre-endothelialized chitosan (CH) porous hollowed scaffold for application in spinal cord regenerative therapies. CH conduits with different degrees of acetylation (DA; 4% and 15%) were prepared, characterized (microstructure, porosity and water uptake) and functionalized with a recombinant fragment of human fibronectin (rhFNIII7–10). Immobilized rhFNIII7–10 was characterized in terms of amount (125I-radiolabelling), exposure of cell-binding domains (immunofluorescence) and ability to mediate endothelial cell (EC) adhesion and cytoskeletal rearrangement. Functionalized conduits revealed a linear increase in immobilized rhFNIII7–10 with rhFNIII7–10 concentration, and, for the same concentration, higher amounts of rhFNIII7–10 on DA 4% compared with DA 15%. Moreover, rhFNIII7–10 concentrations as low as 5 and 20 lgml 1 in the coupling reaction were shown to provide DA 4% and 15% scaffolds, respectively, with levels of exposed cell-binding domains exceeding those observed on the control (DA 4% scaffolds incubated in a 20 lgml 1 human fibronectin solution). These grafting conditions proved to be effective in mediating EC adhesion/cytoskeletal organization on CH with DA 4% and 15%, without affecting the endothelial angiogenic potential. rhFNIII7–10 grafting to CH could be a strategy of particular interest in tissue engineering applications requiring the use of endothelialized porous matrices with tunable degradation rates.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Mestrado Integrado em Engenharia Química e Bioquímica
Resumo:
Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
O efeito de concentrações subinibitórias de penicilina sobre a produção do antígeno grupo-específico e da hialuronidase extracelular foi avaliado em uma amostra de estreptococo pertencente ao grupo G de Lancefield. Em todas as concentrações uma maior quantidade de antígeno grupo-específico foi extraída das células e a atividade específica de hialuronidase se mostrou aumentada em até 1400% nos sobrenadantes das culturas. O maior aumento na expressão de ambos os antígenos foi observado em 1/2 da CMI.
Resumo:
Gamma radiations measurements were carried out in the vicinity of a coal-fired power plant located in the southwest coastline of Portugal. Two different gamma detectors were used to assess the environmental radiation within a circular area of 20 km centred in the coal plant: a scintillometer (SPP2 NF, Saphymo) and a high purity germanium detector (HPGe, Canberra). Fifty urban and suburban measurements locations were established within the defined area and two measurements campaigns were carried out. The results of the total gamma radiation ranged from 20.83 to 98.33 counts per second (c.p.s.) for both measurement campaigns and outdoor doses rates ranged from 77.65 to 366.51 Gy/h. Natural emitting nuclides from the U-238 and Th-232 decay series were identified as well as the natural emitting nuclide K-40. The radionuclide concentration from the uranium and thorium series determined by gamma spectrometry ranged from 0.93 to 73.68 Bq/kg, while for K-40 the concentration ranged from 84.14 to 904.38 Bq/kg. The obtained results were used primarily to define the variability in measured environmental radiation and to determine the coal plant’s influence in the measured radiation levels. The highest values were measured at two locations near the power plant and at locations between the distance of 6 and 20 km away from the stacks, mainly in the prevailing wind direction. The results showed an increase or at least an influence from the coal-fired plant operations, both qualitatively and quantitatively.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
O presente trabalho, além da revisão da literatura sobre quimiotipagem do C. neoformans, com novos dados sobre a epidemiologia da criptococose, teve por finalidade principal a caracterização das duas variedades desta levedura em pacientes com neurocriptococose, HIV + e HIV -. As variedades neoformans e gattii estão hoje bem definidas bioquimicamente, com o emprego do meio C.G.B., proposto por KWON-CHUNG et al. (1982) 24. O isolamento do C. neoformans var. gattii das flores e folhas do Eucalyptus camaldulensis e do Eucalyptus tereticornis, na Austrália, através dos trabalhos de ELLIS & PFEIFFER (1990)16 e PFEIFFER & ELLIS (1992)41, possibilitou investigações epidemiológicas das mais interessantes sobre este microrganismo, levedura capsulada a qual SANFELICE50, 51, na Itália, em 1894 e 1895 despertou a atenção do meio médico. BUSSE8, em 1894, descrevia o primeiro caso de criptococose humana sob a forma de lesão óssea, simulando sarcoma. As pesquisas nacionais sobre o assunto em foco foram destacadas, seguindo-se a experiência dos Autores com o meio de C.G.B. (L - canavanina, glicina e azul de bromotimol). Foi possível, através deste meio o estudo de 50 amostras de líquor, sendo 39 procedentes de aidéticos (78%) e 11 de não aidéticos (22%). De pacientes HIV+, 37 (74%) foram identificados como C. neoformans var. neoformans e 2 (4%) como C. neoformans var. gattii. Dos HIV- 8 ( 16%) foram classificados como C. neoformans var. neoformans e 3 (6%) como C. neoformans var. gattii. Através deste trabalho, evidencia-se a importância da neurocriptococose, principalmente entre os aidéticos, demonstrando-se mais uma vez o interesse do meio CGB na quimiotipagem do C. neoformans em suas duas variedades, ganhando em importância a demonstração de que duas espécies de eucalipto podem funcionar como "árvores-hospedeiras" para o Cryptococcus neoformans var. gattii.
Resumo:
In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepared, the blend of chitosan with glycerol has superior mechanical properties and good biological behavior, making this chitosan based formulation a good candidate to improve robust chitosan structures for the construction of bioabsorbable orthopedic implants.
Resumo:
Biomaterials have been extensively developed and applied in medical devices. Among these materials, bioabsorbable polymers have attracted special attention for orthopedic applications where a transient existence of an implant can provide better results, when compared with permanent implants. Chitosan, a natural biopolymer, has generated enormous interest due to its various advantages such as biocompatibility, biodegradability and osteoconductive properties. In this paper, an assessment of the potential of a developed innovative production process of 3D solid and dense chitosan-based products for biomedical applications is performed and presented. Therefore, it starts with a brief explanation of the technology, highlighting its main features. Then, several potential applications and their markets were identified and assessed. After choosing a primary application and market, its potential as well as its uncertainties and risks were identified. A business model suggesting how to materialize the value from the application was sketched. After that, a brief description of the market as well as the identification of the main competitors and their distinctive features was made. The supply chain analysis and the go-to-market strategy were the following steps. In the end, a final recommendation based on the assessment of the information was prepared.