951 resultados para metal (II)-azo complex
Resumo:
Covalently attached benzimidazole molecules on silica gel surface, ≡SiL (where L = N-propyl-benzimidazole), adsorbs Co(ClO4)2 from non-aqueous solvent by forming a surface complex according to the reaction: m ≡SiL + Co(ClO4)2 → (≡SiL)mCo(ClO4)2. The equilibrium constant and the adsorption capacity, determined by applying the Langmuir equation were b = 3.0 × 103 L mol-1 and Ns= 0.098 × 10-3 mol g-1, respectively. The metal is bonded through the nitrogen atom and the perchlorate ion is not coordinated. The ESR study indicated that the complex has essentially an octahedral geometry with tetragonal distortion, with the electrons of the four nitrogen atoms interacting with the cobalt central metal ion in the equatorial plane. Only one complex species was detected on the surface.
Resumo:
The isotherms of adsorption of CuX2 (X=Cl-, Br-, ClO- 4) by silica gel chemically modified with 2-aminothiazole were studied in acetone and EtOH solutions, at 25°C. The 2-aminothiazole molecule, covalently bond to the silica gel surface, adsorbs CuX2 from solvent by forming a surface complex. At low loading, the electronic and E.S.R. spectral parameters indicate that the Cu2+ complexes have a distorted tetragonal symmetry. The d-d eletronic transition spectra show that for ClO- 4 complex, the peak of absorption do not change for any degree of metal loading whilst for Cl- and Br- complexes, the peak maxima shift to higher energy with lower metal loading. © Elsevier Science Ltd.
Resumo:
The fac-[RuCl3(NO)(dppb)] complex I has been prepared from solution of the correspondent mer isomer in refluxing methanol (dppb = 1,4-bis(diphenylphosphino)butane). The mer-[RuCl3(NO)(diop)] (II) has been obtained from the mer-[RuCl3(diop)(H2O)] by bubbling NO for 1 h in dichloromethane (diop = 2S,3S-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane). The complexes have been characterized by microanalysis, cyclic voltammetry (CV), IR and 31P{1H} NMR spectroscopies. The crystal and molecular structures of these two compounds have been determined from X-ray studies. The mer-[RuCl3(NO)(dppb)] isomer III was characterized in solution by NMR spectra (31P{1H}, 1H{31P}, 31P-1H HETCORR, COSY 1H-1H, HMQC 1H-13C and HMBC 1H-13C). © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.
Synthesis, characterization, and biological activity of a new palladium(II) complex with deoxyalliin
Resumo:
Synthesis, characterization, and biological activity of a new water-soluble Pd(II)-deoxyalliin (S-allyl-L-cysteine) complex are described in this article. Elemental and thermal analysis for the complex are consistent with the formula [Pd(C6H10NO2S)2]. 13C NMR, 1H NMR, and IR spectroscopy show coordination of the ligand to Pd(II) through S and N atoms in a square planar geometry. Final residue of the thermal treatment was identified as a mixture of PdO and metallic Pd. Antiproliferative assays using aqueous solutions of the complex against HeLa and TM5 tumor cells showed a pronounced activity of the complex even at low concentrations. After incubation for 24 h, the complex induced cytotoxic effect over HeLa cells when used at concentrations higher than 0.40 mmol/L. At lower concentrations, the complex was nontoxic, indicating its action is probably due to cell cycle arrest, rather than cell death. In agreement with these results, the flow cytometric analysis indicated that after incubation for 24 h at low concentrations of the complex cells are arrested in G0/G1. © 2005 NRC Canada.
Resumo:
The solid complexes [Co(C6H10NO2S) 2], [Ni(C6H10NO2S)2], [Cu(C6H10NO2S)2] and [Fe(C 6H10NO2S)2] were obtained from the reaction of cobalt(II), nickel(II), copper(II) and iron(II) salts with the potassium salt of the amino acid deoxyalliin (S-allyl-L-cysteine). Electronic absorption spectra of the complexes are typical of octahedral structures. Infrared spectroscopy confirms the ligand coordination to the metal ions through (COO-) and (NH2) groups. EPR spectrum of the Cu(II) complex indicates a slight distortion of its octahedral symmetry. Mössbauer parameters permitted to identify the presence of iron(II) and iron(III) species in the same sample, both of octahedral geometry. Thermal decomposition of the complexes lead to the formation of CoO, NiO, CuO and Fe2O3 as final products. The compounds show poor solubility in water and in the common organic solvents. ©2005 Sociedade Brasileira de Química.
Resumo:
A mercury-sensitive chemically modified graphite paste electrode was constructed by incorporating modified silica gel into a conventional graphite paste electrode. The functional group attached to the (3-chloropropyl) silica gel surface was 2-mercaptoimidazole, giving a new product denoted by 3-(2-thioimidazolyl)propyl silica gel, which is able to complex mercury ions. Mercury was chemically adsorbed on the modified graphite paste electrode containing 3-(2-thioimidazolyl)propyl silica (TIPSG GPE) by immersion in a Hg(II) solution, and the resultant surface was characterized by cyclic and differential pulse anodic stripping voltammetry. One cathodic peak at 0.1 V and other anodic peak at 0.34 V were observed on scanning the potential from -0.1 to 0.8 V (0.01 M KNO3; ν = 2.0 mV s-1 νs. Ag/AgCl). The anodic peak at 0.34 V show an excellent sensitivity for Hg(II) ions in the presence of several foreign ions. A calibration graph covering the concentration range from 0.02 to 2 mg L-1 was obtained. The detection limit was estimated to be 5 μg L-1. The precision for six determinations of 0.05 and 0.26 mg L-1 Hg(II) was 3.0 and 2.5% (relative standard deviation), respectively. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal. 2005 © The Japan Society for Analytical Chemistry.
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The present study describes the incorporation of a complexing agent, dithiooxamide, into microcrystalline cellulose for use in the pre-concentration of Cu(II) and Cd(II) ions from aqueous samples. The FTIR spectrum of the adsorbent exhibited an absorption band in the region of 800 cm-1, which confirmed the binding of the silylating agent to the matrix. Elemental analysis indicated the amount of 0.150 mmol g-1 of the complexing agent. The adsorption data were fit to the modified Langmuir equation, and the maximum amount of metal species extracted from the solution, Ns, was determined to be 0.058 and 0.072 mmol g-1 for Cu(II) and Cd(II), respectively. The covering fraction φ, which was 0.39 and 0.48 for Cu(II) and Cd(II), respectively, was used to estimate a 1:2 (metal:ligand) ratio in the formed complex, and a binding model was proposed based on this information. The adsorbent was applied in the pre-concentration of natural water samples and exhibited an enrichment factor of approximately 50-fold for the species studied, which enabled its use in the analysis of trace metals in aqueous samples. The system was validated by the analysis of certified standard (1643e), and the adsorbent was stable for more than 20 cycles, thus enabling its safe reutilization. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Rifampicin, discovered more than 50 years ago, represents the last novel class of antibiotics introduced for the first-line treatment of tuberculosis. Drugs in this class form part of a 6-month regimen that is ineffective against MDR and XDR TB, and incompatible with many antiretroviral drugs. Investments in R&D strategies have increased substantially in the last decades. However, the number of new drugs approved by drug regulatory agencies worldwide does not increase correspondingly. Ruthenium complexes (SCAR) have been tested in our laboratory and showed promising activity against Mycobacterium tuberculosis. These complexes showed up to 150 times higher activity against MTB than its organic molecule without the metal (free ligand), with low cytotoxicity and high selectivity. In this study, promising results inspired us to seek a better understanding of the biological activity of these complexes. The in vitro biological results obtained with the SCAR compounds were extremely promising, comparable to or better than those for first-line drugs and drugs in development. Moreover, SCAR 1 and 4, which presented low acute toxicity, were assessed by Ames test, and results demonstrated absence of mutagenicity. © 2013 Pavan et al.
Resumo:
The XAS/WAXS time-resolved method was applied for unraveling the complex mechanisms arising from the evolution of several metastable intermediates during the degradation of chlorine layered double hydroxide (LDH) upon heating to 450 °C, i.e., Zn2Al(OH)6·nH2O, ZnCuAl(OH)6·nH2O, Zn2Al 0.75Fe0.25(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O. After a contraction of the interlamellar distance, attributed to the loss of intracrystalline water molecules, this distance experiences an expansion (T > 175-225 °C) before the breakdown of the lamellar framework around 275-295 °C. Amorphous prenucleus clusters with crystallo-chemical local order of zinc-based oxide and zinc-based spinel phases, and if any of copper-based oxide, are formed at T > 175-225 °C well before the loss of stacking of LDH layers. This distance expansion has been ascribed to the migration of Zn II from octahedral layers to tetrahedral sites in the interlayer space, nucleating the nano-ZnO or nano-ZnM2O4 (M = Al or Fe) amorphous prenuclei. The transformation of these nano-ZnO clusters toward ZnO crystallites proceeds through an agglomeration process occurring before the complete loss of layer stacking for Zn2Al(OH)6· nH2O and Zn2Al0.75Fe0.25(OH) 6·nH2O. For ZnCuAl(OH)6·nH 2O and ZnCuAl0.5Fe0.5(OH)6· nH2O, a cooperative effect between the formation of nano-CuO and nano-ZnAl2O4 amorphous clusters facilitates the topochemical transformation of LDH to spinel due to the contribution of octahedral CuII vacancy to ZnII diffusion. © 2013 American Chemical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Despite the resistance developed by the Mycobacterium tuberculosis (MTb) strains, isoniazid (INK) has been recognized as one of the best drug for treatment of Tuberculosis (Tb). The coordination of INH to ruthenium metal centers was investigated as a strategy to enhance the activity of this drug against the sensitive and resistant strains of MTb. The complexes trans-[Ru(NH3)(4)(L)(INH)](2+) (L = SO2 or NH3) were isolated and their chemical and antituberculosis properties studied. The minimal inhibitory concentration (MIC) data show that [Ru(NH3)(5)(INH)](2+) was active in both resistant and sensitive strains, whereas free INK (non-coordinated) showed to be active only against the sensitive strain. The coordination of INH to the metal center in both [Ru(NH3)(5)(INH)](2+) and trans-[Ru(NH3)(4)(SO2)(INH)](2+) complexes led to a shift in the INH oxidation potential to less positive values compared to free INH. Despite, the ease of oxidation of INH did not lead to an increase in the in vitro INH activity against MTb, it might have provided sensitivity toward resistant strains. Furthermore, ruthenium complexes with chemical structures analogous to those described above were synthesized using the oxidation products of INK as ligands (namely, isonicotinic acid and isonicotinamide). These last compounds were not active against any strains of MTb. Moreover, according to DFT calculations the formation of the acyl radical, a proposed intermediate in the INH oxidation, is favored in the [Ru(NH3)(5)(INH)](2+) complex by 50.7 kcal mol(-1) with respect to the free INH. This result suggests that the stabilization of the acyl radical promoted by the metal center would be a more important feature than the oxidation potential of the INH for the antituberculosis activity against resistant strains. (C) 2015 Elsevier B.V. All rights reserved.