945 resultados para mean field independent component analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We re-evaluate the Greenland mass balance for the recent period using low-pass Independent Component Analysis (ICA) post-processing of the Level-2 GRACE data (2002-2010) from different official providers (UTCSR, JPL, GFZ) and confirm the present important ice mass loss in the range of -70 and -90 Gt/y of this ice sheet, due to negative contributions of the glaciers on the east coast. We highlight the high interannual variability of mass variations of the Greenland Ice Sheet (GrIS), especially the recent deceleration of ice loss in 2009-2010, once seasonal cycles are robustly removed by Seasonal Trend Loess (STL) decomposition. Interannual variability leads to varying trend estimates depending on the considered time span. Correction of post-glacial rebound effects on ice mass trend estimates represents no more than 8 Gt/y over the whole ice sheet. We also investigate possible climatic causes that can explain these ice mass interannual variations, as strong correlations between GRACE-based mass balance and atmosphere/ocean parallels are established: (1) changes in snow accumulation, and (2) the influence of inputs of warm ocean water that periodically accelerate the calving of glaciers in coastal regions and, feed-back effects of coastal water cooling by fresh currents from glaciers melting. These results suggest that the Greenland mass balance is driven by coastal sea surface temperature at time scales shorter than accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:02

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Microarray technique is rather powerful, as it allows to test up thousands of genes at a time, but this produces an overwhelming set of data files containing huge amounts of data, which is quite difficult to pre-process, separate, classify and correlate for interesting conclusions to be extracted. Modern machine learning, data mining and clustering techniques based on information theory, are needed to read and interpret the information contents buried in those large data sets. Independent Component Analysis method can be used to correct the data affected by corruption processes or to filter the uncorrectable one and then clustering methods can group similar genes or classify samples. In this paper a hybrid approach is used to obtain a two way unsupervised clustering for a corrected microarray data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test–retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test–retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider blind signal detection in an asynchronous code-division multiple-access (CDMA) system employing short spreading sequences in the presence of unknown multipath fading. This approach is capable of countering the presence of multiple-access interference (MAI) in CDMA fading channels. The proposed blind multiuser detector is based on an independent component analysis (ICA) to mitigate both MAI and noise. This algorithm has been utilised in blind source separation (BSS) of unknown sources from their mixtures. It can also be used for estimating the basis vectors of BSS. The aim is to include an ICA algorithm within a wireless receiver in order to reduce the level of interference in wideband systems. This blind multiuser detector requires no training sequence compared with the conventional multiuser detection receiver. The proposed ICA blind multiuser detector is made robust with respect to knowledge of signature waveforms and the timing of the user of interest. Several experiments are performed in order to verify the validity of the proposed ICA algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a blind multiuser detection algorithm for MIMO channels. The receiver is required to separate and recover the information signal of the desired user(s) based on independent component analysis (ICA) of the received sequence. The received sequence is assumed to be independent identically distributed. Experimental results show that the proposed blind ICA multiuser detection works well with a short symbol sequence, even if the channel time span is not accurately estimated. It is concluded that the proposed blind multiuser detection performs better than the conventional matched filters in a noisy environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective of this work was to explore the performance of a recently introduced source extraction method, FSS (Functional Source Separation), in recovering induced oscillatory change responses from extra-cephalic magnetoencephalographic (MEG) signals. Unlike algorithms used to solve the inverse problem, FSS does not make any assumption about the underlying biophysical source model; instead, it makes use of task-related features (functional constraints) to estimate source/s of interest. FSS was compared with blind source separation (BSS) approaches such as Principal and Independent Component Analysis, PCA and ICA, which are not subject to any explicit forward solution or functional constraint, but require source uncorrelatedness (PCA), or independence (ICA). A visual MEG experiment with signals recorded from six subjects viewing a set of static horizontal black/white square-wave grating patterns at different spatial frequencies was analyzed. The beamforming technique Synthetic Aperture Magnetometry (SAM) was applied to localize task-related sources; obtained spatial filters were used to automatically select BSS and FSS components in the spatial area of interest. Source spectral properties were investigated by using Morlet-wavelet time-frequency representations and significant task-induced changes were evaluated by means of a resampling technique; the resulting spectral behaviours in the gamma frequency band of interest (20-70 Hz), as well as the spatial frequency-dependent gamma reactivity, were quantified and compared among methods. Among the tested approaches, only FSS was able to estimate the expected sustained gamma activity enhancement in primary visual cortex, throughout the whole duration of the stimulus presentation for all subjects, and to obtain sources comparable to invasively recorded data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel electroencephalographic application of a recently developed cerebral source extraction method (Functional Source Separation, FSS), which starts from extracranial signals and adds a functional constraint to the cost function of a basic independent component analysis model without requiring solutions to be independent. Five ad-hoc functional constraints were used to extract the activity reflecting the temporal sequence of sensory information processing along the somatosensory pathway in response to the separate left and right median nerve galvanic stimulation. Constraints required only the maximization of the responsiveness at specific latencies following sensory stimulation, without taking into account that any frequency or spatial information. After source extraction, the reliability of identified FS was assessed based on the position of single dipoles fitted on its retroprojected signals and on a discrepancy measure. The FS positions were consistent with previously reported data (two early subcortical sources localized in the brain stem and thalamus, the three later sources in cortical areas), leaving negligible residual activity at the corresponding latencies. The high-frequency component of the oscillatory activity (HFO) of the extracted component was analyzed. The integrity of the low amplitude HFOs was preserved for each FS. On the basis of our data, we suggest that FSS can be an effective tool to investigate the HFO behavior of the different neuronal pools, recruited at successive times after median nerve galvanic stimulation. As FSs are reconstructed along the entire experimental session, directional and dynamic HFO synchronization phenomena can be studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research into resting-state functional magnetic resonance imaging (fMRI) has shown that the brain is very active during rest. This thesis work utilizes blood oxygenation level dependent (BOLD) signals to investigate the spatial and temporal functional network information found within resting-state data, and aims to investigate the feasibility of extracting functional connectivity networks using different methods as well as the dynamic variability within some of the methods. Furthermore, this work looks into producing valid networks using a sparsely-sampled sub-set of the original data.

In this work we utilize four main methods: independent component analysis (ICA), principal component analysis (PCA), correlation, and a point-processing technique. Each method comes with unique assumptions, as well as strengths and limitations into exploring how the resting state components interact in space and time.

Correlation is perhaps the simplest technique. Using this technique, resting-state patterns can be identified based on how similar the time profile is to a seed region’s time profile. However, this method requires a seed region and can only identify one resting state network at a time. This simple correlation technique is able to reproduce the resting state network using subject data from one subject’s scan session as well as with 16 subjects.

Independent component analysis, the second technique, has established software programs that can be used to implement this technique. ICA can extract multiple components from a data set in a single analysis. The disadvantage is that the resting state networks it produces are all independent of each other, making the assumption that the spatial pattern of functional connectivity is the same across all the time points. ICA is successfully able to reproduce resting state connectivity patterns for both one subject and a 16 subject concatenated data set.

Using principal component analysis, the dimensionality of the data is compressed to find the directions in which the variance of the data is most significant. This method utilizes the same basic matrix math as ICA with a few important differences that will be outlined later in this text. Using this method, sometimes different functional connectivity patterns are identifiable but with a large amount of noise and variability.

To begin to investigate the dynamics of the functional connectivity, the correlation technique is used to compare the first and second halves of a scan session. Minor differences are discernable between the correlation results of the scan session halves. Further, a sliding window technique is implemented to study the correlation coefficients through different sizes of correlation windows throughout time. From this technique it is apparent that the correlation level with the seed region is not static throughout the scan length.

The last method introduced, a point processing method, is one of the more novel techniques because it does not require analysis of the continuous time points. Here, network information is extracted based on brief occurrences of high or low amplitude signals within a seed region. Because point processing utilizes less time points from the data, the statistical power of the results is lower. There are also larger variations in DMN patterns between subjects. In addition to boosted computational efficiency, the benefit of using a point-process method is that the patterns produced for different seed regions do not have to be independent of one another.

This work compares four unique methods of identifying functional connectivity patterns. ICA is a technique that is currently used by many scientists studying functional connectivity patterns. The PCA technique is not optimal for the level of noise and the distribution of the data sets. The correlation technique is simple and obtains good results, however a seed region is needed and the method assumes that the DMN regions is correlated throughout the entire scan. Looking at the more dynamic aspects of correlation changing patterns of correlation were evident. The last point-processing method produces a promising results of identifying functional connectivity networks using only low and high amplitude BOLD signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we focus on the analysis and interpretation of time dependent deformations recorded through different geodetic methods. Firstly, we apply a variational Bayesian Independent Component Analysis (vbICA) technique to GPS daily displacement solutions, to separate the postseismic deformation that followed the mainshocks of the 2016-2017 Central Italy seismic sequence from the other, hydrological, deformation sources. By interpreting the signal associated with the postseismic relaxation, we model an afterslip distribution on the faults involved by the mainshocks consistent with the co-seismic models available in literature. We find evidences of aseismic slip on the Paganica fault, responsible for the Mw 6.1 2009 L’Aquila earthquake, highlighting the importance of aseismic slip and static stress transfer to properly model the recurrence of earthquakes on nearby fault segments. We infer a possible viscoelastic relaxation of the lower crust as a contributing mechanism to the postseismic displacements. We highlight the importance of a proper separation of the hydrological signals for an accurate assessment of the tectonic processes, especially in cases of mm-scale deformations. Contextually, we provide a physical explanation to the ICs associated with the observed hydrological processes. In the second part of the thesis, we focus on strain data from Gladwin Tensor Strainmeters, working on the instruments deployed in Taiwan. We develop a novel approach, completely data driven, to calibrate these strainmeters. We carry out a joint analysis of geodetic (strainmeters, GPS and GRACE products) and hydrological (rain gauges and piezometers) data sets, to characterize the hydrological signals in Southern Taiwan. Lastly, we apply the calibration approach here proposed to the strainmeters recently installed in Central Italy. We provide, as an example, the detection of a storm that hit the Umbria-Marche regions (Italy), demonstrating the potential of strainmeters in following the dynamics of deformation processes with limited spatio-temporal signature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a prospective study conducted at the IRCCS Istituto delle Scienze Neurologiche di Bologna is presented. The aim was to investigate the brain functional connectivity of a cohort of patients (N=23) suffering from persistent olfactory dysfunction after SARS-CoV-2 infection (Post-COVID-19 syndrome), as compared to a matching group of healthy controls (N=26). In particular, starting from individual resting state functional-MRI data, different analytical approaches were adopted in order to find potential alterations in the connectivity patterns of patients’ brains. Analyses were conducted both at a whole-brain level and with a special focus on brain regions involved in the processing of olfactory stimuli (Olfactory Network). Statistical correlations between functional connectivity alterations and the results of olfactory and neuropsychological tests were investigated, to explore the associations with cognitive processes. The three approaches implemented for the analysis were the seed-based correlation analysis, the group-level Independent Component analysis and a graph-theoretical analysis of brain connectivity. Due to the relative novelty of such approaches, many implementation details and methodologies are not standardized yet and represent active research fields. Seed-based and group-ICA analyses’ results showed no statistically significant differences between groups, while relevant alterations emerged from those of the graph-based analysis. In particular, patients’ olfactory sub-graph appeared to have a less pronounced modular structure compared to the control group; locally, a hyper-connectivity of the right thalamus was observed in patients, with significant involvement of the right insula and hippocampus. Results of an exploratory correlation analysis showed a positive correlation between the graphs global modularity and the scores obtained in olfactory tests and negative correlations between the thalamus hyper-connectivity and memory tests scores.