988 resultados para label-free quantification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of cysteine is thought to be the rate limiting factor for synthesis of the tripeptide glutathione (GSH), based on studies in rodents. GSH status is compromised in various disease states and by certain medications leading to increased morbidity and poor survival. To determine the possible importance of dietary cyst(e)ine availability for whole blood glutathione synthesis in humans, we developed a convenient mass spectrometric method for measurement of the isotopic enrichment of intact GSH and then applied it in a controlled metabolic study. Seven healthy male subjects received during two separate 10-day periods an l-amino acid based diet supplying an adequate amino acid intake or a sulfur amino acid (SAA) (methionine and cysteine) free mixture (SAA-free). On day 10, l-[1-13C]cysteine was given as a primed, constant i.v. infusion (3μmol⋅kg−1⋅h−1) for 6 h, and incorporation of label into whole blood GSH determined by GC/MS selected ion monitoring. The fractional synthesis rate (mean ± SD; day-1) of whole blood GSH was 0.65 ± 0.13 for the adequate diet and 0.49 ± 0.13 for the SAA-free diet (P < 0.01). Whole blood GSH was 1,142 ± 243 and 1,216 ± 162 μM for the adequate and SAA-free periods (P > 0.05), and the absolute rate of GSH synthesis was 747 ± 216 and 579 ± 135 μmol⋅liter−1⋅day−1, respectively (P < 0.05). Thus, a restricted dietary supply of SAA slows the rate of whole blood GSH synthesis and diminishes turnover, with maintenance of the GSH concentration in healthy subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrophobic interaction, the tendency for nonpolar molecules to aggregate in solution, is a major driving force in biology. In a direct approach to the physical basis of the hydrophobic effect, nanosecond molecular dynamics simulations were performed on increasing numbers of hydrocarbon solute molecules in water-filled boxes of different sizes. The intermittent formation of solute clusters gives a free energy that is proportional to the loss in exposed molecular surface area with a constant of proportionality of 45 ± 6 cal/mol⋅Å2. The molecular surface area is the envelope of the solute cluster that is impenetrable by solvent and is somewhat smaller than the more traditional solvent-accessible surface area, which is the area transcribed by the radius of a solvent molecule rolled over the surface of the cluster. When we apply a factor relating molecular surface area to solvent-accessible surface area, we obtain 24 cal/mol⋅Å2. Ours is the first direct calculation, to our knowledge, of the hydrophobic interaction from molecular dynamics simulations; the excellent qualitative and quantitative agreement with experiment proves that simple van der Waals interactions and atomic point-charge electrostatics account for the most important driving force in biology.