Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water


Autoria(s): Raschke, Tanya M.; Tsai, Jerry; Levitt, Michael
Data(s)

22/05/2001

15/05/2001

Resumo

The hydrophobic interaction, the tendency for nonpolar molecules to aggregate in solution, is a major driving force in biology. In a direct approach to the physical basis of the hydrophobic effect, nanosecond molecular dynamics simulations were performed on increasing numbers of hydrocarbon solute molecules in water-filled boxes of different sizes. The intermittent formation of solute clusters gives a free energy that is proportional to the loss in exposed molecular surface area with a constant of proportionality of 45 ± 6 cal/mol⋅Å2. The molecular surface area is the envelope of the solute cluster that is impenetrable by solvent and is somewhat smaller than the more traditional solvent-accessible surface area, which is the area transcribed by the radius of a solvent molecule rolled over the surface of the cluster. When we apply a factor relating molecular surface area to solvent-accessible surface area, we obtain 24 cal/mol⋅Å2. Ours is the first direct calculation, to our knowledge, of the hydrophobic interaction from molecular dynamics simulations; the excellent qualitative and quantitative agreement with experiment proves that simple van der Waals interactions and atomic point-charge electrostatics account for the most important driving force in biology.

Identificador

/pmc/articles/PMC33406/

/pubmed/11353861

http://dx.doi.org/10.1073/pnas.111158498

Idioma(s)

en

Publicador

The National Academy of Sciences

Direitos

Copyright © 2001, The National Academy of Sciences

Palavras-Chave #Physical Sciences
Tipo

Text