956 resultados para in beam gamma-spectroscopy
Resumo:
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.
Resumo:
为适应在n、γ昆合脉冲辐射场中对低强度快脉冲y辐射测量的需要,近年国内新研制出实用型YAlO3:Ce(YAP:Ce)快响应无机闪烁晶体。我们使用脉冲线性电流大于1.5A的光电倍增管,分别配置这种晶体以及CeF3、NaI等晶体构成闪烁探测器,在放射性标准源场中,对晶体的相对探测能力进行测量。测量结果表明:国产新型YAP:Ce无机晶体对这1.25MeV射线的探测能力比同体积的CeF3平均高一个量级,是同体积NaI的40%左右;当晶体厚度小于2mm时,YAP:Ce与CeF2、NaI的输出比值分别大于16和44%,说明厚度越薄晶体的相对探测能力越强。
Resumo:
Ultrafast passively mode-locked lasers with spectral tuning capability and high output power have widespread applications in biomedical research, spectroscopy and telecommunications [1,2]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs) [2,3]. However, these typically have a narrow tuning range, and require complex fabrication and packaging [2,3]. A simple, cost-effective alternative is to use Single Wall Carbon Nanotubes (SWNTs) [4,10] and Graphene [10,14]. Wide-band operation is possible using SWNTs with a wide diameter distribution [5,10]. However, SWNTs not in resonance are not used and may contribute to unwanted insertion losses [10]. The linear dispersion of the Dirac electrons in graphene offers an ideal solution for wideband ultrafast pulse generation [10,15]. © 2011 IEEE.
Resumo:
The enhanced emission performance of a graphene/Mo hybrid gate electrode integrated into a nanocarbon field emission micro-triode electron source is presented. Highly electron transparent gate electrodes are fabricated from chemical vapor deposited bilayer graphene transferred to Mo grids with experimental and simulated data, showing that liberated electrons efficiently traverse multi-layer graphene membranes with transparencies in excess of 50-68%. The graphene hybrid gates are shown to reduce the gate driving voltage by 1.1 kV, whilst increasing the electron transmission efficiency of the gate electrode significantly. Integrated intensity maps show that the electron beam angular dispersion is dramatically improved (87.9°) coupled with a 63% reduction in beam diameter. Impressive temporal stability is noted (<1.0%) with surprising negligible long-term damage to the graphene. A 34% increase in triode perveance and an amplification factor 7.6 times that of conventional refractory metal grid gate electrode-based triodes are noted, thus demonstrating the excellent stability and suitability of graphene gates in micro-triode electron sources. A nanocarbon field emission triode with a hybrid gate electrode is developed. The graphene/Mo gate shows a high electron transparency (50-68%) which results in a reduced turn-on potential, increased beam collimation, reduced beam diameter (63%), enhanced stability (<1% variation), a 34% increase in perveance, and an amplification 7.6 times that of equivalent conventional refractory metal gate triodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Helicon plasma source is known as an efficient generator of uniform and high density plasma. A helicon plasma source was developed for the investigation of plasma striping and plasma lens at the Institute of Modern Physics, CAS. In this paper, the characteristics of helicon plasma have been studied by using Langmuir four-probe and a high plasma density up to 3.9×1013 /cm3 has been achieved with the Nagoya type III antenna. In the experiment, several important phenomena have been found: (1) for a given magnetic induction intensity, the plasma density became greater with the increase of RF power; (2) the helicon mode appeared at the RF power between 300 W and 400 W; (3) the plasma density gradually tended to saturation as the RF power increased to the higher power; (4) a higher plasma density can be obtained by a good matching between the RF power and the magnetic field distribution. The key issue is how to optimize the matching between the RF power and the magnetic field. Moreover, some tests on the extraction of ion beam were performed, and the preliminary results were given. The problems which existed in the helicon ion source will be discussed and the increase in beam density will be expected by extraction system optimum.
Resumo:
The research of the in-beam efficiency calibration of Neutron Detector Array of Peking University using N-17 and C-16 beams was introduced in this paper. The efficiency of neutron wall and ball are comparable to the foreign similar devices and neutrons can be detected from low to high energies in high efficiency.
Resumo:
In order to study the gas-phase chemical behavior of transactinides, an on-line isothermal chromatography apparatus has been developed and applied to separate short-lived technetium isotopes in the form of TcO3 from fission products. The fission products from a Cf-252 source were continuously and rapidly transported through the capillary to the isothermal chromatography apparatus using the N-2/KBr gas-jet techniques. Volatile oxide molecules were formed at the reaction zone kept at 900 degrees C since a trace amount of oxygen existed in the N-2 carrier gas. With the new developed isothermal chromatography apparatus, a selective separation of Tc from fission products was achieved. After isothermal chromatographic separation, Tc-101,Tc-103,Tc-104,Tc-105,Tc-106,Tc-107,Tc-108 were dominantly observed together with their Ru daughters in the gamma-spectrum, The chemical yields of Tc-101, and Tc-104 and Tc-105 isotopes with longer half-lives are about 55-57%, and those of Tc-103, Tc-106 and Tc-108 isotopes with shorter half-lives dropped down to 25-28%. The adsorption enthalpy of the investigated compounds on quartz surfaces was determined to be -150 +/- 5 kJ/mol by fitting the measured retention curves with a Monte Carlo model. The observed species of technetium oxide is attributed to TcO3, which is in good agreement with previous experimental results. That means our system worked properly and it can be used to investigate the gas-phase chemical behavior of transactinides.
Resumo:
本论文分为两部分,分别沿自旋和同位旋自由度开展研究工作。第一部分介绍原子核高自旋态研究的相关背景知识、基础理论等,描述在束γ谱学研究的实验技术和方法,分析和讨论形变核179Pt转动带能级结构的特性,并采用相关理论对其进行分析。通过融合蒸发反应149sm(35cl,P4n)布居奇A核179Pt的高自旋激发态。指认179Pt的组态为1/2-[521],5/2-[512〕和7/2+〔633〕的三条转动带。在hco=0.27 Mev附近,观测到1/2-〔521]带内顺排角动量突然增大,建议该现象是由一对113/2中子发生顺排造成的。另外观察到在7/2+〔633]带中出现较大的旋称劈裂。建议由于三轴形变加强了波函数中来自几=1/2轨道的组分,从而导致较大的旋称劈裂的出现。论文第二部分介绍重丰中子核衰变性质研究以及新核素合成、鉴别工作的相关背景知识、理论基础及实验技术。并对相关的研究工作分别进行阐述。通过快中子反应合成并鉴别了新核素19705和新的同核异能素186rnTa,利用γ(x)谱学方法首次建立了19705的部分衰变纲图。测得它们的半衰期分别为2.8士0.6 min和1.50.1 min,并与理论计算结果进行了比较;进行了原子核基态β延发裂变(pDF)的实验研究,经测量首次发现了230Ac的两个pDF事件,测得23OAc的pDF几率为(1.19±0.40)
Resumo:
Electrocatalytic mechanism for the electrochemical oxidation of formaldehyde (HCHO) on the highly dispersed Au microparticles electrodeposited on the surface of the glass carbon (GC) electrode in the alkaline Na2CO3/NaHCO3 solution and the surface characteristics of the Au microparticle-modified glass carbon (Au/GC) electrode were studied with in situ FTIR spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the final products of HCHO oxidation is HCOO- at the Au/GC electrode and CO2 at the bulk Au electrode. The difference may be ascribed to the different surface characteristics between the Au/GC electrode and the bulk Au electrode. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of methanol on polythionine(PTn) film modified with Pt microparticles has been studied by means of cyclic voltammetry and in-situ FTIR spectroscopy. The Pt microparticles produced by cyclic voltammetry were highly dispersed in and on the PTn film. The modified electrodes exhibit significant electrocatalytic activity for the oxidation of methano and the catalytic activity was found in dependence on the Pt loading. The linearly adsorbed CO species is the only intermediate in the oxidation of methanol and the abnormal IR spectra for adsorbed CO were observed. On such modified electrodes, adsorbed CO species derived from methanol can be readily oxidized. The enhanced electrocatalytic activity may be ascribed to the high dispersion of Pt microparticles in and on the PTn film and the synergestic effect between Pt microparticles and the polymer. From the above results, a possible reaction mechanism was proposed.
Resumo:
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme had been isolated, purified and partially characterized from muscle tissue of the shrimp Macrobrachium nipponense. The purification was achieved by heat treatment, ammonium sulfate fractionated precipitation and column chromatograph on DEAE-cellulose 32. Some physiological and biochemical characterization of it was tested. The molecular weight of it was about 21.7 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had an absorption peak of 278 nm in ultraviolet region, and the enzyme remained stable at 25-45 degreesC within 90 min. However, it was rapidly inactivated at higher temperature. Treatment of the enzyme with 1 mM ZnCl2, SDS and 1 mM or 10 mM mercaptoethanol showed some increasing activity. However, the enzyme activity was obviously inhibited by 10 mM CaCl2, CuSO4, ZnCl2 and 1 mM CaCl2 and 10 mM K2Cr2O7. SOD activity did not show significantly variation after incubated with 1 mM CaCl2, EDTA and 10 MM SDS. The enzyme was insensitive to cyanide and contained 1.03 +/- 0.14 atoms of manganese per subunit shown in atomic absorption spectroscopy, which revealed that purified SOD was Mn superoxide dismutase. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.
Resumo:
The behaviour of a self-assembled monolayer of 2-mercaptobenzimidazole (MBI) at the Au(111) electrode has been examined using cyclic voltammetry and in situ FTIR spectroscopy. The charge associated with the reductive desorption is pH independent while the oxidative partial redeposition charge increases when the pH is lowered. This is due to differences between the nature and the solubility of the MBI desorption product. In alkaline and neutral media MBI desorbs as the thiolate. In contrast, in acidic solutions the thiol is the desorbed product. Subtractively normalized interfacial reflection Fourier transform absorption spectroscopy (SNIFTIRS) has been applied to investigate the MBI monolayer in contact with aqueous solutions of different pH. The SNIFTIRS data are in agreement with the electrochemical results. Moreover, quantitative analysis of the IR data provided evidence that adsorbed MBI molecules assume a tilted orientation with an angle of 60±5° between the C2 axis of the molecule and the direction normal to the gold surface. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A range of ionic liquids was prepared by mixing 1-alkyl-3-methylimidazolium chloride with gallium(III) chloride or indium(III) chloride in various ratios, producing both acidic and basic compositions. Their speciation was investigated using Ga-71 NMR or In-115 NMR spectroscopy, as well as extended X-ray absorption fine structure. Polynuclear Lewis acidic anions, [MxCl3x+1](-), were found in chlorogallate(III) ionic liquids, but not in chloroindate(III) systems.
Resumo:
A range of chloroindate(III) ionic liquid systems was prepared by mixing of 1-alkyl-3-methylimidazolium chloride with indium(III) chloride in various ratios, expressed as the mol fraction of indium(III) chloride, chi(InCl3). For chi(InCl3) 0.50, the products were biphasic (suspensions of a solid in an ionic liquid). Speciation of these chloroindate(III) systems was carried out using a wide range of techniques: differential scanning calorimetry (DSC), polarised optical microscopy (POM), liquid-state and solid-state In-115 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). Ionic liquids prepared using an excess of the organic chloride (chi(InCl3) 0.5) contained indium(III) chloride powder suspended in a neutral tetrachloroindate ionic liquid.