927 resultados para hip fracture
Resumo:
Fatigue fracture is an overuse injury commonly encountered in military and sports medicine, and known to relate to intensive or recently intensified physical activity. Bone responds to increased stress by enhanced remodeling. If physical stress exceeds bone s capability to remodel, accumulation of microfractures can lead to bone fatigue and stress fracture. Clinical diagnosis of stress fractures is complex and based on patient s anamnesis and radiological imaging. Bone stress fractures are mostly low-risk injuries, healing well after non-operative management, yet, occurring in high-risk areas, stress fractures can progress to displacement, often necessitating surgical treatment and resulting in prolonged morbidity. In the current study, the role of vitamin D as a predisposing factor for fatigue fractures was assessed using serum 25OHD level as the index. The average serum 25OHD concentration was significantly lower in conscripts with fatigue fracture than in controls. Evaluating TRACP-5b bone resorption marker as indicator of fatigue fractures, patients with elevated serum TRACP-5b levels had eight times higher probability of sustaining a stress fracture than controls. Among the 154 patients with exercise induced anterior lower leg pain and no previous findings on plain radiography, MRI revealed a total of 143 bone stress injuries in 86 patients. In 99% of the cases, injuries were in the tibia, 57% in the distal third of the tibial shaft. In patients with injury, forty-nine (57%) patients exhibited bilateral stress injuries. In a 20-year follow-up, the incidence of femoral neck fatigue fractures prior to the Finnish Defence Forces new regimen in 1986 addressing prevention of these fractures was 20.8/100,000, but rose to 53.2/100,000 afterwards, a significant 2.6-fold increase. In nineteen subjects with displaced femoral neck fatigue fractures, ten early local complications (in first postoperative year) were evident, and after the first postoperative year, osteonecrosis of the femoral head in six and osteoarthritis of the hip in thirteen patients were found. It seems likely that low vitamin D levels are related to fatigue fractures, and that an increasing trend exists between TRACP-5b bone resorption marker elevation and fatigue fracture incidence. Though seldom detected by plain radiography, fatigue fractures often underlie unclear lower leg stress-related pain occurring in the distal parts of the tibia. Femoral neck fatigue fractures, when displaced, lead to long-term morbidity in a high percentage of patients, whereas, when non-displaced, they do not predispose patients to subsequent adverse complications. Importantly, an educational intervention can diminish the incidence of fracture displacement by enhancing awareness and providing instructions for earlier diagnosis of fatigue fractures.
Resumo:
Some perioperative clinical factors related to the primary cemented arthroplasty operation for osteoarthritis of the hip or knee joint are studied and discussed in this thesis. In a randomized, double-blind study, 39 patients were divided into two groups: one receiving tranexamic acid and the other not receiving it. Tranexamic acid was given in a dose of 10 mg/kg before the operation and twice thereafter, at 8-hour intervals. Total blood loss was smaller in the tranexamic acid group than in the control group. No thromboembolic complications were noticed. In a prospective, randomized study, 58 patients with hip arthroplasty and 39 patients with knee arthroplasty were divided into groups with postoperative closed-suction drainage and without drainage. There was no difference in healing of the wounds, postoperative blood transfusions, complications or range of motion. As a result of this study, the use of drains is no longer recommended. In a randomised study the effectiveness of a femoral nerve block (25 patients) was compared with other methods of pain control (24 patients) on the first postoperative day after total knee arthroplasty. The femoral block consisted of a single injection administered at patients´ bedside during the surgeon´s hospital rounds. Femoral block patients reported less pain and required half of the amount of oxycodone. Additional femoral block or continued epidural analgesia was required more frequently by the control group patients. Pain management with femoral blocks resulted in less work for nursing staff. In a retrospective study of 422 total hip and knee arthroplasty cases the C-reactive protein levels and clinical course were examined. After hip and knee arthroplasty the maximal C-reactive protein values are seen on the second and third postoperative days, after which the level decreases rapidly. There is no difference between patients with cemented or uncemented prostheses. Major postoperative complications may cause a further increase in C-reactive protein levels at one and two weeks. In-hospital and outpatient postoperative control radiographs of 200 hip and knee arthroplasties were reviewed retrospectively. If postoperative radiographs are of good quality, there seems to be no need for early repetitive radiographs. The quality and safety of follow-up is not compromised by limiting follow-up radiographs to those with clinical indications. Exposure of the patients and the staff to radiation is reduced. Reading of the radiographs by only the treating orthopaedic surgeon is enough. These factors may seem separate from each other, but linking them together may help the treating orthopaedic surgeon to adequate patient care strategy. Notable savings can be achieved.
Resumo:
Notched three-point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and the entire fracture process was simulated using a regular triangular two-dimensional lattice network only over the expected fracture proces zone width. The rest of the beam specimen was discretised by a coarse triangular finite element mesh. The discrete grain structure of the concrete was generated assuming the grains to be spherical. The load versus CMOD plots thus simulated agreed reasonably well with the experimental results. Moreover, acoustic emission (AE) hits were recorded during the test and compared with the number of fractured lattice elements. It was found that the cumulative AE hits correlated well with the cumulative fractured lattice elements at all load levels thus providing a useful means for predicting when the micro-cracks form during the fracturing process, both in the pre-peak and in the post-peak regimes.
Femoral shaft fractures in adults: Epidemiology, fracture patterns, nonunions, and fatigue fractures
Resumo:
Acoustic emission (AE) energy, instead of amplitude, associated with each of the event is used to estimate the fracture process zone (FPZ) size. A steep increase in the cumulative AE energy of the events with respect to time is correlated with the formation of FPZ. Based on the AE energy released during these events and the locations of the events, FPZ size is obtained. The size-independent fracture energy is computed using the expressions given in the boundary effect model by least squares method since over-determined system of equations are obtained when data from several specimens are used. Instead of least squares method a different method is suggested in which the transition ligament length, measured from the plot of histograms of AE events plotted over the un-cracked ligament, is used directly to obtain size-independent fracture energy. The fracture energy thus calculated seems to be size-independent.
Resumo:
Aims: We report on the outcome of the Exeter Contemporary flanged cemented all-polyethylene acetabular component with a mean follow-up of 12 years (10 to 13.9). This study reviewed 203 hips in 194 patients. 129 hips in 122 patients are still in situ; 66 hips in 64 patients were in patients who died before ten years, and eight hips (eight patients) were revised. Clinical outcome scores were available for 108 hips (104 patients) and radiographs for 103 hips (100 patients). Patients and Methods: A retrospective review was undertaken of a consecutive series of 203 routine primary cemented total hip arthroplasties (THA) in 194 patients. Results: There were no acetabular component revisions for aseptic loosening. Acetabular revision was undertaken in eight hips. In four hips revision was necessitated by periprosthetic femoral fractures, in two hips by recurrent dislocation, in one hip for infection and in one hip for unexplained ongoing pain. Oxford and Harris hip scores demonstrated significant clinical improvement (all p < 0.001). Radiolucent lines were present in 37 (36%) of the 103 acetabular components available for radiological evaluation. In 27 of these, the line was confined to zone 1. No component had migrated. Conclusion: Kaplan–Meier survivorship, with revision for aseptic loosening as the endpoint, was 100% at 12.5 years and for all causes was 97.8% (95% confidence interval 95.6 to 100) when 40 components remained at risk. The Exeter Contemporary flanged cemented acetabular component demonstrates excellent survivorship at 12.5 years. Take home message: The Exeter Contemporary flanged cemented acetabular component has excellent clinical outcomes and survivorship when used with the Exeter stem in total hip arthroplasty.
Resumo:
Background The incidence of obesity amongst patients presenting for elective Total Hip Arthroplasty (THA) has increased in the last decade and the relationship between obesity and the need for joint replacement has been demonstrated. This study evaluates the effects of morbid obesity on outcomes following primary THA by comparing short-term outcomes in THA between a morbidly obese (BMI ≥40) and a normal weight (BMI 18.5 - <25) cohort at our institution between January 2003 and December 2010. Methods Thirty-nine patients included in the morbidly obese group were compared with 186 in the normal weight group. Operative time, length of stay, complications, readmission and length of readmission were compared. Results Operative time was increased in the morbidly obese group at 122 minutes compared with 100 minutes (p=0.002). Post-operatively there was an increased 30-day readmission rate related to surgery of 12.8% associated with BMI ≥40 compared with 2.7% (p= 0.005) as well as a 5.1 fold increase in surgery related readmitted bed days - 0.32 bed days per patient for normal weight compared with 1.64 per patient for the morbidly obese (p=0.026). Conclusion Morbidly obese patients present a technical challenge and likely this and the resultant complications are underestimated. More work needs to be performed in order to enable suitable allocation of resources.
Resumo:
The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.
Resumo:
The fracture behavior of concrete–concrete interface is characterized using acoustic emission (AE). Beams of different sizes having jointed interface between two different strengths of concrete are tested. The results of load, displacement, CMOD, AE-events and AE-energy are analyzed. The width of fracture process zone and damage zone are computed using AE-data and are found to be independent of size. It is observed that, as the difference in compressive strength of concrete on either side of interface increases, the load carrying capacity, number of AE-events, AE-energy, width of fracture process zone and damage zone decreases.
Resumo:
Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.
Resumo:
In this work a single edge notched plate (SEN(T)) subjected to a tensile stress pulse is analysed, using a 2D plane strain dynamic finite element procedure. The interaction of the notch with a pre-nucleated hole ahead of it is examined. The background material is modelled by the Gurson constitutive law and ductile failure by microvoid coalescence in the ligament connecting the notch and the hole is simulated. Both rate independent and rate dependent material behaviour is considered. The notch tip region is subjected to a range of loading rates j by varying the peak value and the rise time of the applied stress pulse. The results obtained from these simulations are compared with a three point bend (TPB) specimen subjected to impact loading analysed in an earlier work [3] The variation of J at fracture initiation, J(c), with average loading rate j is obtained from the finite element simulations. It is found that the functional relationship between J(c) and j is fairly independent of the specimen geometry and is only dependent on material behaviour.
Resumo:
Small additions of Cu to the SUS 304H, a high temperature austenitic stainless steel, enhance its high temperature strength and creep resistance. As Cu is known to cause embrittlement, the effect of Cu on room temperature mechanical properties that include fracture toughness and fatigue crack threshold of as-solutionized SUS 304H steel were investigated in this work. Experimental results show a linear reduction in yield and ultimate strengths with Cu addition of up to 5 wt.% while ductility drops markedly for 5 wt.% Cu alloy. However, the fracture toughness and the threshold stress intensity factor range for fatigue crack initiation were found to be nearly invariant with Cu addition. This is because the fracture in this alloy is controlled by the debonding from the matrix of chromium carbide precipitates, as evident from fractography. Cu, on the other hand, remains either in solution or as nano-precipitates and hence does not influence the fracture characteristics. It is concluded that small additions of Cu to 304H will not have adverse effects on its fracture and fatigue behavior. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The basic method of JIc calculation using a single specimen is discussed. Dokouipil's approach for evaluating the JIc value is extended further and the effect of prestrain on rolled mild steel with significant inclusions is studied using this modified approach. Although this method does not give an accurate value of JIc, it is quite effective for a comparative study. While the fracture toughness of annealed and 7% prestrained materials are about the same, the fracture toughness of 3% prestrained material is significantly lower.