730 resultados para fuzzy sample entropy
Resumo:
A key component in preventing harassment is having each employer develop and implement a policy which prohibits harassment in the workplace. Having such a policy in place is also an important part of an employer’s defense should a harassment complaint be filed against the employer. This policy should be separate from and in addition to a general anti-discrimination policy. A good policy will set forth procedures that will encourage victims to come forward, that will protect confidentiality of the persons involved, that guards against retaliation, and that brings complaints to a resolution.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
Canonical correspondence analysis and redundancy analysis are two methods of constrained ordination regularly used in the analysis of ecological data when several response variables (for example, species abundances) are related linearly to several explanatory variables (for example, environmental variables, spatial positions of samples). In this report I demonstrate the advantages of the fuzzy coding of explanatory variables: first, nonlinear relationships can be diagnosed; second, more variance in the responses can be explained; and third, in the presence of categorical explanatory variables (for example, years, regions) the interpretation of the resulting triplot ordination is unified because all explanatory variables are measured at a categorical level.
Resumo:
Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.
Resumo:
We introduce several exact nonparametric tests for finite sample multivariatelinear regressions, and compare their powers. This fills an important gap inthe literature where the only known nonparametric tests are either asymptotic,or assume one covariate only.
Resumo:
In moment structure analysis with nonnormal data, asymptotic valid inferences require the computation of a consistent (under general distributional assumptions) estimate of the matrix $\Gamma$ of asymptotic variances of sample second--order moments. Such a consistent estimate involves the fourth--order sample moments of the data. In practice, the use of fourth--order moments leads to computational burden and lack of robustness against small samples. In this paper we show that, under certain assumptions, correct asymptotic inferences can be attained when $\Gamma$ is replaced by a matrix $\Omega$ that involves only the second--order moments of the data. The present paper extends to the context of multi--sample analysis of second--order moment structures, results derived in the context of (simple--sample) covariance structure analysis (Satorra and Bentler, 1990). The results apply to a variety of estimation methods and general type of statistics. An example involving a test of equality of means under covariance restrictions illustrates theoretical aspects of the paper.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
Small sample properties are of fundamental interest when only limited data is avail-able. Exact inference is limited by constraints imposed by speci.c nonrandomizedtests and of course also by lack of more data. These e¤ects can be separated as we propose to evaluate a test by comparing its type II error to the minimal type II error among all tests for the given sample. Game theory is used to establish this minimal type II error, the associated randomized test is characterized as part of a Nash equilibrium of a .ctitious game against nature.We use this method to investigate sequential tests for the di¤erence between twomeans when outcomes are constrained to belong to a given bounded set. Tests ofinequality and of noninferiority are included. We .nd that inference in terms oftype II error based on a balanced sample cannot be improved by sequential sampling or even by observing counter factual evidence providing there is a reasonable gap between the hypotheses.
Resumo:
This paper analyzes whether standard covariance matrix tests work whendimensionality is large, and in particular larger than sample size. Inthe latter case, the singularity of the sample covariance matrix makeslikelihood ratio tests degenerate, but other tests based on quadraticforms of sample covariance matrix eigenvalues remain well-defined. Westudy the consistency property and limiting distribution of these testsas dimensionality and sample size go to infinity together, with theirratio converging to a finite non-zero limit. We find that the existingtest for sphericity is robust against high dimensionality, but not thetest for equality of the covariance matrix to a given matrix. For thelatter test, we develop a new correction to the existing test statisticthat makes it robust against high dimensionality.
Resumo:
The central message of this paper is that nobody should be using the samplecovariance matrix for the purpose of portfolio optimization. It containsestimation error of the kind most likely to perturb a mean-varianceoptimizer. In its place, we suggest using the matrix obtained from thesample covariance matrix through a transformation called shrinkage. Thistends to pull the most extreme coefficients towards more central values,thereby systematically reducing estimation error where it matters most.Statistically, the challenge is to know the optimal shrinkage intensity,and we give the formula for that. Without changing any other step in theportfolio optimization process, we show on actual stock market data thatshrinkage reduces tracking error relative to a benchmark index, andsubstantially increases the realized information ratio of the activeportfolio manager.
Resumo:
A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to visualize the results of many multivariate techniques, especially those that are based on the singular value decomposition. We consider data sets consisting of continuous-scale measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of multiple correspondence analysis. Of special interest is the way quality of fit of the biplot is measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis seriously under-estimates this measure. We show how the results of fuzzy multiple correspondence analysis can be defuzzified to obtain estimated values of the original data, and prove that this implies an orthogonal decomposition of variance. This permits a measure of fit to be calculated in the familiar form of a percentage of explained variance, which is directly comparable to the corresponding fit measure used in principal component analysis of the original data. The approach is motivated initially by its application to a simulated data set, showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is applied to a real set of meteorological data.
Resumo:
In this paper I explore the issue of nonlinearity (both in the datageneration process and in the functional form that establishes therelationship between the parameters and the data) regarding the poorperformance of the Generalized Method of Moments (GMM) in small samples.To this purpose I build a sequence of models starting with a simple linearmodel and enlarging it progressively until I approximate a standard (nonlinear)neoclassical growth model. I then use simulation techniques to find the smallsample distribution of the GMM estimators in each of the models.