989 resultados para field theory at finite temperature
Resumo:
We use the method of Bogolubov transformations to compute the rate of pair production by an electric field in (1+1)-dimensional de Sitter space. The results are in agreement with those obtained previously using the instanton methods. This is true even when the size of the instanton is comparable to the size of the de Sitter horizon.
Resumo:
The singularity in the Hawking-Turok model of open inflation has some appealing properties, such as the fact that its action is integrable. Also, if one thinks of the singularity as the boundary of spacetime, then the Gibbons-Hawking term is nonvanishing and finite. Here, we consider a model where the gravitational and scalar fields are coupled to a dynamical membrane. The singular instanton can then be obtained as the limit of a family of no-boundary solutions where both the geometry and the scalar field are regular. Using this procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking term. Unrelated to this issue, we also point out that the singularity acts as a reflecting boundary for scalar perturbations and gravity waves. Therefore, the quantization of cosmological perturbations seems to be well posed in this background.
Resumo:
We point out that using the heat kernel on a cone to compute the first quantum correction to the entropy of Rindler space does not yield the correct temperature dependence. In order to obtain the physics at arbitrary temperature one must compute the heat kernel in a geometry with different topology (without a conical singularity). This is done in two ways, which are shown to agree with computations performed by other methods. Also, we discuss the ambiguities in the regularization procedure and their physical consequences.
Resumo:
"static" instanton, representing pair creation of critical bubbles¿a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such a static instanton may be well suited for the ¿saltatory¿ relaxation scenario proposed by Feng et al.
Resumo:
We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.
Resumo:
We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
Resumo:
We investigate the dynamics of a F=1 spinor Bose-Einstein condensate of 87Rb atoms confined in a quasi-one-dimensional trap both at zero and at finite temperature. At zero temperature, we observe coherent oscillations between populations of the various spin components and the formation of multiple domains in the condensate. We study also finite temperature effects in the spin dynamics taking into account the phase fluctuations in the Bogoliubov-de Gennes framework. At finite T, despite complex multidomain formation in the condensate, population equipartition occurs. The length scale of these spin domains seems to be determined intrinsically by nonlinear interactions.
Resumo:
Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.
Resumo:
Dans la th´eorie des repr´esentations modulaires des groupes finis, les modules d?endo-permutation occupent une place importante. En e_et, c?est le r?ole jou´e par ces modules dans l?analyse de la structure de certains modules simples pour des groupes finis p-nilpotents, qui a amen´e E. Dade `a en introduire le concept, en 1978. Quelques ann´ees plus tard, L. Puig a d´emontr´e que la source de n?importe quel module simple pour un groupe fini p-r´esoluble quelconque est un module d?endo-permutation. Plus r´ecemment, on s?est rendu compte que ces modules interviennent aussi dans l?analyse locale des cat´egories d´eriv´ees et dans l?´etude des syst`emes de fusion. La situation que l?on consid`ere est la suivante. On se donne un nombre premier p, un p-groupe fini P, un corps alg´ebriquement clos k de caract´eristique p et on veut d´eterminer tous les kP-modules d?endo-permutation couverts ind´ecomposables de type fini, c?est-`a-dire tous les kP-modules ind´ecomposables de type fini, tels que leur alg`ebre d?endomorphismes est un kP-module de permutation ayant un facteur direct trivial. On d´efinit une relation d?´equivalence sur l?ensemble de ces kP-modules et le produit tensoriel des modules induit une structure de groupe ab´elien sur l?ensemble des classes d?´equivalence. On appelle ce groupe, le groupe de Dade de P. Ainsi, classifier les modules d?endo-permutation couverts revient `a d´eterminer le groupe de Dade de P. Le groupe de Dade d?un p-groupe fini arbitraire est encore inconnu, bien qu?E. Dade, en 1978, ´etait d´ej`a parvenu `a la classification dans le cas o`u P est ab´elien. La premi`ere partie de ce travail de th`ese est consacr´ee au probl`eme de la classification dans le cas g´en´eral et r´esoud la question dans le cas de deux familles de p-groupes finis, `a savoir celle des p-groupes m´etacycliques, pour un nombre premier p impair, et celle des 2-groupes extrasp´eciaux, de la forme D8 _ · · · _ D8. Ces deux choix ont ´et´e motiv´es par le fait que ces groupes sont "presque" ab´eliens. De plus, certains r´esultats sur la structure du groupe de Dade d?un p-groupe fini quelconque rendent le groupe de Dade des groupes de ces deux familles plus simple `a ´etudier. Dans un deuxi`eme temps, nous nous sommes int´eress´es `a deux occurrences de ces modules dans la th´eorie de la repr´esentation des groupes finis, c?est-`a-dire `a deux raisons qui motivent leur ´etude. Ainsi, nous avons r´ealis´e des modules d?endo-permutation comme sources de modules simples. En particulier, il s?av`ere que, dans le cas d?un nombre premier p impair, tout module d?endo-permutation ind´ecomposable dont la classe est un ´el´ement de torsion dans le groupe de Dade est la source d?un module simple. Finalement, nous avons d´etermin´e, parmi tous les modules d?endo-permutation connus actuellement, lesquels poss`edent une r´esolution de permutation endo-scind´ee. Nous sommes arriv´es `a la conclusion que les seuls modules d?endo-permutation qui n?ont pas de r´esolution de permutation endo-scind´ee sont les modules "exceptionnels" apparaissant pour un 2-groupe de quaternions g´en´eralis´es.<br/><br/>In modular representation theory, endo-permutation modules occupy an important position. Indeed, the role that these modules play, in the analysis of the structure of some particular simple modules for finite p-nilpotent groups, induced E. Dade, in 1978, to give them their current name. A few years later, L. Puig proved that the source of any simple module for any finite psolvable group is an endo-permutation module. More recently, the occurrence of endo-permutation modules has also been noticed in the local analysis of splendid equivalences between derived categories and in the study of fusion systems. We consider the following situation. Given a prime number p, a finite pgroup P and an algebraically closed field k of characteristic p, we are looking for all finitely generated indecomposable capped endo-permutation kP-modules. That is, all finitely generated indecomposable kP-modules such that their endomorphism algebra is a permutation kP-module having a trivial direct summand. Then, we define an equivalence relation on the set of all isomorphism classes of such modules, and it turns out that the tensor product (over k) induces a structure of abelian group on this set. We call this group the Dade group of P. Hence, classifying all indecomposable finitely generated capped endo-permutation kPmodules is equivalent to determining the Dade group of P. At present, the Dade group of an arbitrary finite p-group is still unknown. However, E. Dade computed the Dade group of all finite abelian p-groups, in 1978 already. The first part of this doctoral thesis is concerned with the problem of the classification in the general case and solve it in the case of two families of finite p-groups, namely the metacyclic p-groups, for an odd prime number p, and the extraspecial 2-groups of the shape D8 _· · ·_D8. These two choices have been motivated by the fact that these groups are not far from being abelian. Moreover, some general results concerning the Dade group of arbitrary finite p-groups suggest that the Dade group of the groups belonging to these two families is easier to study. In the second part of this thesis, we have been looking at two particular occurrences of these modules in representation theory of finite groups which motivate the interest of their classification. Thus, we realised endo-permutation modules as sources of simple modules. In particular, it turns out that, in case p is an odd prime, any indecomposable module whose class in the Dade group is a torsion element is the source of some simple module. Finally, we considered all the modules we know at present and determined which ones have an endo-split permutation resolution. We could then conclude that all but the "exceptionnal" modules occurring in the generalized quaternion case have an endo-split permutation resolution.<br/><br/>"Module d?endo-permutation" n?est pas le nom d?une maladie exotique contagieuse (du moins pas `a ma connaissance), comme vous pourriez peut-?etre l?imaginer si vous faites partie des personnes qui croient que le titre de docteur n?est destin´e qu?aux m´edecins. Dans ce cas, il se peut que le sujet dont il est question ici vous cause quelques naus´ees et r´eveille de douloureux souvenirs d?´ecole, car un module d?endo-permutation est un objet math´ematique, alg´ebrique, plus pr´ecis´ement. Ce concept a ´et´e introduit il y a un quart de si`ecle, de l?autre c?ot´e de l?Atlantique, et il s?est r´ev´el´e su_samment int´eressant pour qu?aujourd?hui il ait franchi bien des fronti`eres, celles de l?alg`ebre y compris. Mais de quoi s?agit-il ? Si vous entendez le terme "endo-permutation" probablement pour la premi`ere fois, ce n?est certainement pas le cas pour celui de "module". Cependant, sa d´efinition dans le pr´esent contexte ne co¨ýncide avec aucune de celles figurant dans les dictionnaires ordinaires. Les personnes qui ont d´ej`a entendu parler de Frobenius, Burnside, Schur, ou encore Brauer, pourront vous dire qu?un module est une repr´esentation. "De quoi ?" vous demanderezvous. "Un spectacle de marionnettes, peut-?etre ?" Bien s?ur que non ! Un module d?endo-permutation est une repr´esentation particuli`ere de certains groupes finis, o`u un groupe n?est pas un groupe de rock, comme vous pouvez vous en douter, mais d´esigne un objet math´ematique connu par tous les ´etudiants en sciences au terme de leur premi`ere ann´ee universitaire (en th´eorie, du moins). La "popularit´e" de la notion de groupe, fini ou non, est due au fait que les groupes sont fr´equemment utilis´es, aussi bien dans le domaine abstrait des math´ematiques, que dans le monde r´eel des physiciens, chimistes et autres biologistes (pour ne citer qu?eux). "Mais comment peut-on utiliser concr`etement ces objets invisibles ?" vous demanderez-vous alors. Et bien, justement, en les consid´erant par l?interm´ediaire de leurs repr´esentations, c?est-`a-dire en leur associant des matrices, de fa¸con plus ou moins naturelle. Or, comme il y a "beaucoup trop" de matrices pour un groupe donn´e, elles sont classifi´ees selon certaines de leurs propri´et´es, ce qui permet de les r´epertorier dans diverses familles (celle des modules d?endo-permutation, par exemple). Un groupe est ainsi rendu "concret", car les donn´ees matricielles sont manipulables par tous les scienti- fiques (et leurs ordinateurs), qui peuvent alors les utiliser dans leurs recherches, afin de contribuer au progr`es de la science. En toute franchise, c?est bien loin de ces soucis terre-`a-terre que ce travail de th`ese sur la classification des modules d?endo-permutation a ´et´e accompli. En fait, quitte `a choquer certaines ?ames sensibles, sa r´ealisation est surtout due au caract`ere ´epicure de son auteur, qui, avouons-le, en a ´et´e pleinement satisfait !
Resumo:
Työssä tutkitaan telepäätelaitteen yli gigahertsin taajuisen säteilevän RF kentän sietoisuutta. Mittauksissa testattava laite on Tellabs Oy:n valmistaman CTU modeemin tuotekehitysversio. Teoriaosassa käydään läpi sähkömagneettisten aaltojen teoriaa, sekä säteilevän RF kentän aiheuttamien sähkömagneettiset häiriöiden syntymekanismeja. Myös säteilevien häiriöiden EMC mittauksiin tarvittavien mittalaitteiden tärkeimmät ominaisuudet esitellään, sekä pohditaan yli gigahertsin taajuuksille sopivien EMC mittalaitteiden vaatimuksia. EMC standardit eivät tällä hetkellä aseta vaatimuksia telelaitteiden RF kentän sietoisuudelle yli gigahertsin taajuudella. Tämän vuoksi työssä käsitellään myös todennäköisimpiä häiriölähteitä tällä taajuusalueella. Mittauksissa tutkittiin CTU:n RF kentän sietoisuutta taajuusalueella l - 4.2 GHz. Mittaukset suoritettiin sekä radiokaiuttomassa kammiossa että GTEM solussa. Myös metallisten lisäsuojien vaikutusta CTU:n kentänsietoisuuteen tutkittiin GTEM solussa.
Resumo:
Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.
Resumo:
Four problems of physical interest have been solved in this thesis using the path integral formalism. Using the trigonometric expansion method of Burton and de Borde (1955), we found the kernel for two interacting one dimensional oscillators• The result is the same as one would obtain using a normal coordinate transformation, We next introduced the method of Papadopolous (1969), which is a systematic perturbation type method specifically geared to finding the partition function Z, or equivalently, the Helmholtz free energy F, of a system of interacting oscillators. We applied this method to the next three problems considered• First, by summing the perturbation expansion, we found F for a system of N interacting Einstein oscillators^ The result obtained is the same as the usual result obtained by Shukla and Muller (1972) • Next, we found F to 0(Xi)f where A is the usual Tan Hove ordering parameter* The results obtained are the same as those of Shukla and Oowley (1971), who have used a diagrammatic procedure, and did the necessary sums in Fourier space* We performed the work in temperature space• Finally, slightly modifying the method of Papadopolous, we found the finite temperature expressions for the Debyecaller factor in Bravais lattices, to 0(AZ) and u(/K/ j,where K is the scattering vector* The high temperature limit of the expressions obtained here, are in complete agreement with the classical results of Maradudin and Flinn (1963) .
Resumo:
Cette thèse porte sur le calcul de structures électroniques dans les solides. À l'aide de la théorie de la fonctionnelle de densité, puis de la théorie des perturbations à N-corps, on cherche à calculer la structure de bandes des matériaux de façon aussi précise et efficace que possible. Dans un premier temps, les développements théoriques ayant mené à la théorie de la fonctionnelle de densité (DFT), puis aux équations de Hedin sont présentés. On montre que l'approximation GW constitue une méthode pratique pour calculer la self-énergie, dont les résultats améliorent l'accord de la structure de bandes avec l'expérience par rapport aux calculs DFT. On analyse ensuite la performance des calculs GW dans différents oxydes transparents, soit le ZnO, le SnO2 et le SiO2. Une attention particulière est portée aux modèles de pôle de plasmon, qui permettent d'accélérer grandement les calculs GW en modélisant la matrice diélectrique inverse. Parmi les différents modèles de pôle de plasmon existants, celui de Godby et Needs s'avère être celui qui reproduit le plus fidèlement le calcul complet de la matrice diélectrique inverse dans les matériaux étudiés. La seconde partie de la thèse se concentre sur l'interaction entre les vibrations des atomes du réseau cristallin et les états électroniques. Il est d'abord montré comment le couplage électron-phonon affecte la structure de bandes à température finie et à température nulle, ce qu'on nomme la renormalisation du point zéro (ZPR). On applique ensuite la méthode GW au calcul du couplage électron-phonon dans le diamant. Le ZPR s'avère être fortement amplifié par rapport aux calculs DFT lorsque les corrections GW sont appliquées, améliorant l'accord avec les observations expérimentales.
Resumo:
We present a continuum model for doped manganites which consist of two species of quantum spin-1 / 2 fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be considerably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting, canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being stable against phase separation. There are also regions in the phase diagram where phase separation occurs