931 resultados para fate of nanoparticles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd. Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO(4) (Ln = Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolvable, size- and shape-controlled ruthenium dioxide nanoparticles are successfully achieved through a two-phase route. The influence of reaction time, temperature, and monomer concentration and the nature of capping agents on the morphologies of nanoparticles are studied through transmission electron microscopy (TEM). A possible mechanism for the formation and growth of nanoparticles is also involved. X-ray powder diffraction (XRD) confirms the amorphous structure for as-prepared ruthenium dioxide nanoparticles. Samples are immobilized by simple dip-coating on a current collector, and the cyclic voltammetry measurement is utilized to investigate their electrochemical properties. The specific capacitance of one sample can teach as high as 840 F g(-1), which reveals the promising application potential to electrochemical capacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics of intermediates of bacteriorhodopsin (bR) can be verified by chemical modification of its surroundings. CeO2 nanoparticles, which were obtained using water-in-oil (W/O) microemulsion and calcined at various temperatures, were used as chemical additive for the modification of bR. X-ray diffraction (XRD) shows that the mean particle sizes for the samples calcined at 500 and 800 degrees C are approximately 10 and 30 nm, respectively. We prepared CeO2 nanoparticle modified poly(vinyl alcohol) (bR-PVA) films with an optical density of about 1.5 at the ground state. It is observed that the lifetime of the Wintermediate for the modified films is prolonged compared with that of the unmodified ones, and the lifetime increases with decreasing particle size. A probable mechanism, which is likely to involve effective molecular interactions between the CeO2 nanoparticles and the bR molecules, is discussed. The hydroxyl groups, which might arise from the interaction between the nanoparticles and the surrounding water molecules, help to lower the ability of the Schiff base of uptaking protons in the Wintermediate. The results indicate that controlling the interactions between biomolecules and various nanomaterials would enlarge the functionality and the range of the application of nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyelectrolyte-protected gold nanoparticles have been facilely obtained by heating an amine-containing polyelectrolyte/HAuCl4 aqueous solution without the additional step of introducing other reducing agents. All experimental data indicate that different initial molar ratio of polyelectrolyte to gold can lead to the formation of dispersed nanoparticles, quasi one-dimensional aggregates of nanoparticles or bulk metal deposits. More importantly, the growth kinetics of gold particles thus formed can be tuned by changing the initial molar ratio of polyelectrolyte to gold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three fully amorphous comb-branch polymers based on poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether of different molecular weights as side chains were synthesized. SiO2 nanoparticles of various contents and the salt LiCF3SO3 were added to these comb-branch polymers to obtain nanocomposite polymer electrolytes. The thermal and transport properties of the samples have been characterized. The maximum conductivity of 2.8x10(-4) S cm(-1) is obtained at 28 degreesC. In the system the longer side chain of the comb-branch polymer electrolyte increases in ionic conductivity after the addition of nanoparticles. To account for the role of the ceramic fillers in the nanocomposite polymer electrolyte, a model based on a fully amorphous comb-branch polymer matrix in enhancing transport properties of Li+ ions is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable colloidal solutions of gold nanoparticles surface-derivatized with a thiol monolayer have been prepared using two-phase (water-nitrobenzene) reduction of AuCl4- by sodium borohydride in the presence of 2-mercapto-3-n-octylthiophene (MOT). This kind of surface-functionalized gold nanoparticles can be easily incorporated into the poly(3-octylthiophene) (POT) films on electrode in the process of electrochemical polymerization leading to POT-gold nanoparticle (POT-Au) composite films. Scanning probe microscopy (SPM) and X-ray photoelectric spectroscopy (XPS) have been employed to characterize the surface-derivatized particles and the resulting films. The method of incorporation of nanoparticles into polymer by surface-derivatization and in situ polymerization can also be employed to prepare many other polymer-nanoparticle compostie materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New silica-based europium fluorescent nanoparticles having surface amino groups were prepared by a covalent binding-copolymerization technique. In the nanoparticles, the fluorescent Eu3+ chelate molecules were covalently bound to silicon atoms to protect the nanoparticles from dye leaking in bio-applications. The amino groups on the surface of nanoparticles made the surface modification and bioconjugation of nanoparticles easier. The nanoparticles were characterized and developed as a new type of fluorescence probe for a highly sensitive time-resolved fluoroimmunoassay (TR-FIA) of human hepatitis B surface antigen (HBsAg).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laboratory studies were conducted to investigate the interactions of nanoparticles (NPs) formed via simulated cloud processing of mineral dust with seawater under environmentally relevant conditions. The effect of sunlight and the presence of exopolymeric substances (EPS) were assessed on the: (1) colloidal stability of the nanoparticle aggregates (i.e. size distribution, zeta potential, polydispersity); (2) micromorphology and (3) Fe dissolution from particles. We have demonstrated that: (i) synthetic nano-ferrihydrite has distinct aggregation behaviour from NPs formed from mineral dusts in that the average hydrodynamic diameter remained unaltered upon dispersion in seawater (~1500 nm), whilst all dust derived NPs increased about three fold in aggregate size; (ii) relatively stable and monodisperse aggregates of NPs formed during simulated cloud processing of mineral dust become more polydisperse and unstable in contact with seawater; (iii) EPS forms stable aggregates with both the ferrihydrite and the dust derived NPs whose hydrodynamic diameter remains unchanged in seawater over 24h; (iv) dissolved Fe concentration from NPs, measured here as <3 kDa filter-fraction, is consistently >30% higher in seawater in the presence of EPS and the effect is even more pronounced in the absence of light; (v) micromorphology of nanoparticles from mineral dusts closely resemble that of synthetic ferrihydrite in MQ water, but in seawater with EPS they form less compact aggregates, highly variable in size, possibly due to EPS-mediated steric and electrostatic interactions. The larger scale implications on real systems of the EPS solubilising effect on Fe and other metals with the additional enhancement of colloidal stability of the resulting aggregates are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to
translocate into cytoplasm by siglec receptor-mediated internalisation.

Materials and Methods: Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 mg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.

Results: Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to NileRed-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.

Conclusions: Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic
space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in nitrogen fate and transport in different catchments types is often not considered. This research considers the importance of such nitrogen processes within groundwater pathways in two agricultural catchments in Ireland; a well drained catchment, underlain by karstified Carboniferous limestone, and a poorly drained catchment, underlain by Silurian greywacke.
Depth specific low-flow groundwater sampling was used to evaluate the hydrochemical stratification in groundwater. Groundwater samples, as well as surface water samples, along river courses were analysed for nitrogen species (NO3, NH4 and NO2) and nitrate isotopes (d15N and d18O) as well as field parameters and major ions
.
The dominant nitrate (NO3) groundwater pathway in the poorly drained greywacke catchment is through the shallow weathered bedrock, as indicated by transmissivity values and the ionic and isotopic signatures, and a clear reduction in NO3 concentration is observed with depth. A similar chloride trend would suggest dilution is a major factor, however d15N and d18O isotopic values producing an enrichment ratio of 1.8 indicate that denitrification is also an important process involved in the fate of the NO3 within the groundwater flow system. This consistent trend with depth is in contrast to the stratification pattern observed in the karstified catchment. NO3 was not detected in the shallow groundwater pathway; the dominant groundwater pathway is in the deeper groundwater where there is little change in the nitrate isotope values with depth (d15N values range between 4.1 and 4.6 ‰). This deeper groundwater contributes the dominant proportion of the river flow through a number of springs. As a result, the deeper groundwater, springs and river have a similar ionic signature and NO3 concentration range (23 ± 3 mg/l). Despite this pattern, the NO3 isotopes show a distinct difference in isotopic values between the deeper groundwater in the diffuse karst and the springs indicating some denitrification is occurring during groundwater discharge into the river. Furthermore the isotopes give an indication of the variability of the spatial extent of the springs and the complexities of the fissures through which they are fed. The results of this study clearly show the importance of the geology in the fate and transport of NO3 in agricultural catchments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AC magnetic heating of superparamagnetic Co and Fe nanoparticles for application in hyperthermia was measured to find a size of nanoparticles that would result in an optimal heating for given amplitude and frequency of ac externally applied magnetic field. To measure it, a custom-made power supply connected to a 20-turn insulated copper coil in the shape of a spiral solenoid cooled with water was used. A fiber-optic temperature sensor has been used to measure the temperature with an accuracy of 0.0001 K. The magnetic field with magnitude of 20.6 µT and a frequency of oscillation equal to 348 kHz was generated inside the coil to heat magnetic nanoparticles. The maximum specific power loss or the highest heating rate for Co magnetic nanoparticles was achieved for nanoparticles of 8.2 nm in diameter. The maximum heating rate for coated Fe was found for nanoparticles with diameter of 18.61 nm. © (2013) Trans Tech Publications, Switzerland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graças aos desenvolvimentos na área da síntese de nanomaterais e às potentes técnicas de caracterização à nanoescala conseguimos hoje visualizar uma nanopartícula (NP) como um dispositivo de elevado potencial terapêutico. A melhoria da sua efectividade terapêutica requer no entanto o aprofundamento e sistematização de conhecimentos, ainda muito incipientes, sobre toxicidade, selectividade, efeitos colaterais e sua dependência das próprias características físico-químicas da NP em análise. O presente trabalho, elegendo como alvo de estudo uma substância considerada biocompatível e não tóxica, a hidroxiapatite (Hap), pretende dar um contributo para esta área do conhecimento. Definiram-se como metas orientadoras deste trabalho (i) estudar a síntese de nanoparticulas de Hap (Hap NP), e a modificação das características físico-químicas e morfológicas das mesmas através da manipulação das condições de síntese; (ii) estudar a funcionalização das Hap NP com nanoestruturas de ouro e com ácido fólico, para lhes conferir capacidades acrescidas de imagiologia e terapêuticas, particularmente interessantes em aplicações como o tratamento do cancro (iii) estudar a resposta celular a materiais nanométricos, com propriedades físico-químicas diversificadas. No que se refere à síntese de Hap NP, comparam-se dois métodos de síntese química distintos, a precipitação química a temperatura fisiológica (WCS) e a síntese hidrotérmica (HS), em meios aditivados com ião citrato. A síntese WCS originou partículas de tamanho nanométrico, com uma morfologia de agulha, pouco cristalinas e elevada área superficial especifica. A síntese HS à temperatura de 180ºC permitiu obter partículas de dimensões também nanométricas mas com área específica inferior, com morfologia de bastonete prismático com secção recta hexagonal e elevada cristalinidade. Com o objectivo de aprofundar o papel de algumas variáveis experimentais na definição das características finais das partículas de hidroxiapatite, designadamente o papel do ião citrato (Cit), variou-se a razão molar [Cit/Ca] da solução reagente e o tempo de síntese. Demonstrou-se que o ião citrato e outras espécies químicas resultantes da sua decomposição nas condições térmicas (180ºC) de síntese tem um papel preponderante na velocidade de nucleação e de crescimento dessas mesmas partículas e por conseguinte nas características físico-químicas das mesmas. Elevadas razões [Cit/Ca] originam partículas de dimensão micrométrica cuja morfologia é discutida no contexto do crescimento com agregação. Com o objectivo de avaliar a citotoxicidade in vitro das nanopartículas sintetizadas procedeu-se à esterilização das mesmas. O método de esterilização escolhido foi a autoclavagem a 121º C. Avaliou-se o impacto do processo de esterilização nas características das partículas, verificando-se contrariamente às partículas WCS, que as partículas HS não sofrem alterações significativas de morfologia, o que se coaduna com as condições de síntese das mesmas, que são mais severas do que as de esterilização. As partículas WCS sofrem processos de dissolução e recristalização que se reflectem em alterações significativas de morfologia. Este estudo demonstrou que a etapa de esterilização de nanopartículas para aplicações biomédicas, por autoclavagem, pode alterar substancialmente as propriedades das mesmas, sendo pois criticamente importante caracterizar os materiais após esterilização. Os estudos citotoxicológicos para dois tipos de partículas esterilizadas (HSster e WCSster) revelaram que ambas apresentam baixa toxicidade e possuem potencial para a modelação do comportamento de células osteoblásticas. Tendo em vista a funcionalização da superfície das Hap NP para multifunções de diagnóstico e terapia exploraram-se condições experimentais que viabilizassem o acoplamento de nanopartículas de ouro à superfície das nanopartículas de Hidroxiapatite (Hap-AuNP). Tirando partido da presença de grupos carboxílicos adsorvidos na superfície das nanopartículas de Hap foi possível precipitar partículas nanométricas de ouro (1,5 a 2,5 nm) na superfície das mesmas adaptando o método descrito por Turkevich. No presente trabalho as nanopartículas de Hap funcionaram assim como um template redutor do ouro iónico de solução, propiciando localmente, na superfície das próprias nanopartículas de Hap, a sua redução a ouro metálico. A nucleação do ouro é assim contextualizada pelo papel redutor das espécies químicas adsorvidas, designadamente os grupos carboxílicos derivados de grupos citratos que presidiram à síntese das próprias nanopartículas de Hap. Estudou-se também a funcionalização das Hap NP com ácido fólico (FA), uma molécula biologicamente interessante por ser de fácil reconhecimento pelos receptores existentes em células cancerígenas. Os resultados confirmaram a ligação do ácido fólico à superfície das diferentes partículas produzidas HS e Hap-AuNPs. Graças às propriedades ópticas do ouro nanométrico (efeito plasmão) avaliadas por espectroscopia vis-UV e às potencialidades de hipertermia local por conversão fototérmica, as nanoestruturas Hap-AuNPs produzidas apresentam-se com elevado interesse enquanto nanodispositivos capazes de integrar funções de quimio e terapia térmica do cancro e imagiologia. O estudo da resposta celular aos diversos materiais sintetizados no presente trabalho foi alvo de análise na tentativa de se caracterizar a toxicidade dos mesmos bem como avaliar o seu desempenho em aplicações terapêuticas. Demonstrou-se que as Hap NP não afectam a proliferação das células para concentrações até 500 g/ml, observando-se um aumento na expressão genética da BMP-2 e da fosfatase alcalina. Verificou-se também que as Hap NP são susceptíveis de internalização por células osteoblásticas MG63, apresentando uma velocidade de dissolução intracelular relativamente reduzida. A resposta celular às Hap-AuNP confirmou a não citotoxicidade destas partículas e revelou que a presença do ouro na superfície das Hap NP aumenta a taxa proliferação celular, bem como a expressão de parâmetros osteogénicos. No seu conjunto os resultados sugerem que os vários tipos de partículas sintetizadas no presente estudo apresentam também comportamentos interessantes para aplicações em engenharia de tecido ósseo.