873 resultados para evolution of leaf epidermis
Resumo:
BACKGROUND: Evolutionary analysis may serve as a useful approach to identify and characterize host defense and viral proteins involved in genetic conflicts. We analyzed patterns of coding sequence evolution of genes with known (TRIM5alpha and APOBEC3G) or suspected (TRIM19/PML) roles in virus restriction, or in viral pathogenesis (PPIA, encoding Cyclophilin A), in the same set of human and non-human primate species. RESULTS AND CONCLUSION: This analysis revealed previously unidentified clusters of positively selected sites in APOBEC3G and TRIM5alpha that may delineate new virus-interaction domains. In contrast, our evolutionary analyses suggest that PPIA is not under diversifying selection in primates, consistent with the interaction of Cyclophilin A being limited to the HIV-1M/SIVcpz lineage. The strong sequence conservation of the TRIM19/PML sequences among primates suggests that this gene does not play a role in antiretroviral defense.
Resumo:
The enzyme glutamate dehydrogenase (GDH) is important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. Human GDH exists in housekeeping and brain-specific isotypes encoded by the genes GLUD1 and GLUD2, respectively. Here we show that GLUD2 originated by retroposition from GLUD1 in the hominoid ancestor less than 23 million years ago. The amino acid changes responsible for the unique brain-specific properties of the enzyme derived from GLUD2 occurred during a period of positive selection after the duplication event.
Resumo:
Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.
Resumo:
Reliable information is a crucial factor influencing decision-making and, thus, fitness in all animals. A common source of information comes from inadvertent cues produced by the behavior of conspecifics. Here we use a system of experimental evolution with robots foraging in an arena containing a food source to study how communication strategies can evolve to regulate information provided by such cues. The robots could produce information by emitting blue light, which the other robots could perceive with their cameras. Over the first few generations, the robots quickly evolved to successfully locate the food, while emitting light randomly. This behavior resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food. Because robots were competing for food, they were quickly selected to conceal this information. However, they never completely ceased to produce information. Detailed analyses revealed that this somewhat surprising result was due to the strength of selection on suppressing information declining concomitantly with the reduction in information content. Accordingly, a stable equilibrium with low information and considerable variation in communicative behaviors was attained by mutation selection. Because a similar coevolutionary process should be common in natural systems, this may explain why communicative strategies are so variable in many animal species.
Resumo:
Plants influence the behavior of and modify community composition of soil-dwelling organisms through the exudation of organic molecules. Given the chemical complexity of the soil matrix, soil-dwelling organisms have evolved the ability to detect and respond to these cues for successful foraging. A key question is how specific these responses are and how they may evolve. Here, we review and discuss the ecology and evolution of chemotaxis of soil nematodes. Soil nematodes are a group of diverse functional and taxonomic types, which may reveal a variety of responses. We predicted that nematodes of different feeding guilds use host-specific cues for chemotaxis. However, the examination of a comprehensive nematode phylogeny revealed that distantly related nematodes, and nematodes from different feeding guilds, can exploit the same signals for positive orientation. Carbon dioxide (CO(2)), which is ubiquitous in soil and indicates biological activity, is widely used as such a cue. The use of the same signals by a variety of species and species groups suggests that parts of the chemo-sensory machinery have remained highly conserved during the radiation of nematodes. However, besides CO(2), many other chemical compounds, belonging to different chemical classes, have been shown to induce chemotaxis in nematodes. Plants surrounded by a complex nematode community, including beneficial entomopathogenic nematodes, plant-parasitic nematodes, as well as microbial feeders, are thus under diffuse selection for producing specific molecules in the rhizosphere that maximize their fitness. However, it is largely unknown how selection may operate and how belowground signaling may evolve. Given the paucity of data for certain groups of nematodes, future work is needed to better understand the evolutionary mechanisms of communication between plant roots and soil biota.
Resumo:
Animals can often coordinate their actions to achieve mutually beneficial outcomes. However, this can result in a social dilemma when uncertainty about the behavior of partners creates multiple fitness peaks. Strategies that minimize risk ("risk dominant") instead of maximizing reward ("payoff dominant") are favored in economic models when individuals learn behaviors that increase their payoffs. Specifically, such strategies are shown to be "stochastically stable" (a refinement of evolutionary stability). Here, we extend the notion of stochastic stability to biological models of continuous phenotypes at a mutation-selection-drift balance. This allows us to make a unique prediction for long-term evolution in games with multiple equilibria. We show how genetic relatedness due to limited dispersal and scaled to account for local competition can crucially affect the stochastically-stable outcome of coordination games. We find that positive relatedness (weak local competition) increases the chance the payoff dominant strategy is stochastically stable, even when it is not risk dominant. Conversely, negative relatedness (strong local competition) increases the chance that strategies evolve that are neither payoff nor risk dominant. Extending our results to large multiplayer coordination games we find that negative relatedness can create competition so extreme that the game effectively changes to a hawk-dove game and a stochastically stable polymorphism between the alternative strategies evolves. These results demonstrate the usefulness of stochastic stability in characterizing long-term evolution of continuous phenotypes: the outcomes of multiplayer games can be reduced to the generic equilibria of two-player games and the effect of spatial structure can be analyzed readily.
Resumo:
BACKGROUND: Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. RESULTS: Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. CONCLUSIONS: Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
Y chromosomes underlie sex determination in mammals, but their repeat-rich nature has hampered sequencing and associated evolutionary studies. Here we trace Y evolution across 15 representative mammals on the basis of high-throughput genome and transcriptome sequencing. We uncover three independent sex chromosome originations in mammals and birds (the outgroup). The original placental and marsupial (therian) Y, containing the sex-determining gene SRY, emerged in the therian ancestor approximately 180 million years ago, in parallel with the first of five monotreme Y chromosomes, carrying the probable sex-determining gene AMH. The avian W chromosome arose approximately 140 million years ago in the bird ancestor. The small Y/W gene repertoires, enriched in regulatory functions, were rapidly defined following stratification (recombination arrest) and erosion events and have remained considerably stable. Despite expression decreases in therians, Y/W genes show notable conservation of proto-sex chromosome expression patterns, although various Y genes evolved testis-specificities through differential regulatory decay. Thus, although some genes evolved novel functions through spatial/temporal expression shifts, most Y genes probably endured, at least initially, because of dosage constraints.
Resumo:
Estudi realitzat a partir d’una estada a la Institut J.W. Jenkinson Laboratory for Evolution and Development of the University of Oxford, Regne Unit, entre 2010 i 2012. He estat membre del laboratori del Professor Peter W.H. Holland com a becari post-doctoral Beatriu de Pinós des de setembre de 2010 al setembre de 2012. El nostre projecte de recerca se centra en l'anàlisi genòmic comparatiu del Regne Animal, tot explorant el contingut dels genomes a través de totes les branques de l'arbre dels animals. Totes les referències a les meves publicacions durant aquest post-doc es poden trobar a http://about.me/jordi_paps. Crec que el nombre i la qualitat dels resultats del meu post-doc, un total de 8 publicacions incloent dos articles a la prestigiosa revista Nature, són prova de l'èxit d'aquest post-doc. Prof Peter W. H. Holland (Departament de Zoologia de la Universitat d'Oxford) i jo som coautors de tres articles de genòmica comparativa, resultats directes d'aquest projecte: 1) comparació de families gèniques entre vertebrats invertebrats (Briefings in Functional Genomics), 2) el genoma de l'ostra (publicat a la revista Nature), i 3) els genomes de 6 platihelmints paràsits (acceptat també a Nature). A més, tenim altres 2 treballs en preparació. Un d'ells analitza l'evolució, expressió i funció dels gens Hox al a la tènia Hymenolepis. El perfil fi d'aquests gens clau del desenvolupament esclareix els canvis d'estil de vida dels organismes. A més, durant aquest últim post-doc he participat en diverses col•laboracions, incloent anàlisi de gens d'envelliment a cucs plans, un estudi sobre la filogènia del grup Gastrotricha, una revisió de l'evolució phylum Platyhelminthes, així com un capítol d'un llibre sobre l'evolució dels animals bilaterals. Finalment, gràcies a la beca Beatriu de Pinós, el Prof. Peter W.H. Holland m'ha convidat a formar part del seu equip com un investigador post-doctoral en el seu projecte ERC Advance actual sobre duplicacions genòmiques.
Resumo:
Summary : Mining activities produce enormous amounts of waste material known as tailings which are composed of fine to medium size particles. These tailings often contain sulfides, which oxidation can lead to acid and metal contamination of water; therefore they need to be remediated. In this work a tailings bioremediation approach was investigated by an interdisciplinary study including geochemistry, mineralogy and microbiology. The aim of the work was to study the effect of the implementation of wetland above oxidizing tailings on the hydrogeology and the biogeochemical element cycles, and to assess the system evolution over time. To reach these goals, biogeochemical processes occurring in a marine shore tailings deposit were investigated. The studied tailings deposit is located at the Bahìa de Ite, Pacific Ocean, southern Peru, where between 1940 and 1996 the tailings were discharged from the two porphyry copper mines Cuajone and Toquepala. After the end of deposition, a remediation approach was initiated in 1997 with a wetland implementation above the oxidizing tailings. Around 90% of the tailings deposits (total 16 km2) were thus remediated, except the central delta area and some areas close to the shoreline. The multi-stable isotope study showed that the tailings were saturated with fresh water in spite of the marine setting, due to the high hydraulic gradient resulting from the wetland implementation. Submarine groundwater discharge (SGD) was the major source of SO4 2-, C1-, Na+, Fe2+, and Mn2+ input into the tailings at the original shelf-seawater interface. The geochemical study (aquatic geochemistry and X-Ray diffraction (XRD) and sequential extractions from the solid fraction) showed that iron and sulfur oxidation were the main processes in the non-remediated tailings, which showed a top a low-pH oxidation zone with strong accumulation of efflorescent salts at the surface due to capillary upward transport of heavy metals (Fe, Cu, Zn, Mn, Cd, Co, and Ni) in the arid climate. The study showed also that the implementation of the wetland resulted in very low concentrations of heavy metals in solution (mainly under the detection limit) due to the near neutral pH and more reducing conditions (100-150 mV). The heavy metals, which were taken from solution, precipitated as hydroxides and sulfides or were bound to organic matter. The bacterial community composition analysis by Terminal Restriction Fragment Length Polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes combined with a detailed statistical analysis revealed a high correlation between the bacterial distribution and the geochemical variables. Acidophilic autotrophic oxidizing bacteria were dominating the oxidizing tailings, whereas neutrophilic and heterotrophic reducing bacteria were driving the biogeochemical processes in the remediated tailings below the wetland. At the subsurface of the remediated tailings, an iron cycling was highlighted with oxidation and reduction processes due to micro-aerophilic niches provided by the plant rhizosphere in this overall reducing environment. The in situ bioremediation experiment showed that the main parameter to take into account for the effectiveness was the water table and chemistry which controls the system. The constructed remediation cells were more efficient and rapid in metal removal when saturation conditions were available. This study showed that the bioremediation by wetland implementation could be an effective and rapid treatment for some sulfidic mine tailings deposits. However, the water saturation of the tailings has to be managed on a long-term basis in order to guarantee stability. Résumé : L'activité minière produit d'énormes quantités de déchets géologiques connus sous le nom de « tailings » composées de particules de taille fine à moyenne. Ces déchets contiennent souvent des sulfures dont l'oxydation conduit à la formation d'effluents acides contaminés en métaux, d'où la nécessité d'effectuer une remédiation des sites de stockage concernés. Le but de ce travail est dans un premier temps d'étudier l'effet de la bio-remédiation d'un dépôt de tailings oxydés sur l'hydrogéologie du système et les cycles biogéochimiques des éléments et en second lieu, d'évaluer l'évolution du processus de remédiation dans le temps. Le site étudié dans ce travail est situé dans la Bahía de Ite, au sud du Pérou, au bord de l'Océan Pacifique. Les déchets miniers en question sont déposés dans un environnement marin. De 1940 à 1996, les déchets de deux mines de porphyre cuprifère - Cuajone et Toquepala - ont été acheminés sur le site via la rivière Locumba. En 1997, une première remédiation a été initiée avec la construction d'une zone humide sur les tailings. Depuis, environ 90% de la surface du dépôt (16 km2) a été traité, les parties restantes étant la zone centrale du delta du Locumba et certaines zones proches de la plage. Malgré la proximité de l'océan, les études isotopiques menées dans le cadre de ce travail ont montré que les tailings étaient saturés en eau douce. Cette saturation est due à la pression hydraulique résultant de la mise en place des zones humides. Un écoulement d'eau souterrain sous-marin a été à détecté à l'interface entre les résidus et l'ancien fond marin. En raison de la géologie locale, il constitue une source d'entrée de SO4 2-, Cl-, Na+, FeZ+, et Mn2+ dans le système. L'analyse de la géochimie aquatique, la Diffraction aux Rayons X (XRD) et l'extraction séquentielle ont montré que l'oxydation du fer et .des sulfures est le principal processus se produisant dans les déchets non remédiés. Ceci a entraîné le développement d'une zone d'oxydation à pH bas induisant une forte accumulation des sels efflorescents, conséquence de la migration capillaire des métaux lourds (Fe, Cu, Zn, Mn, Cd, Co et Ni) de la solution vers la surface dans ce climat aride. Cette étude a montré également que la construction de la zone humide a eu comme résultats une précipitation des métaux dans des phases minérales en raison du pH neutre et des conditions réductrices (100-150mV). Les métaux lourds ont précipité sous la forme d'hydroxydes et de sulfures ou sont adsorbés à la matière organique. L'analyse de la composition de la communauté bactérienne à l'aide la technique T-RFLP (Terminal Restriction Fragment Length Polymorphism) et par le clonage/séquençage des gènes de l'ARNr 16S a été combinée à une statistique détaillée. Cette dernière a révélé une forte corrélation entre la distribution de bactéries spécifiques et la géochimie : Les bactéries autotrophes acidophiles dominent dans les déchets oxydés non remédiés, tandis que des bactéries hétérotrophes neutrophiles ont mené les processus microbiens dans les déchets remédiés sous la zone humide. Sous la surface de la zone humide, nos analyses ont également mis en évidence un cycle du fer par des processus d'oxydoréduction rendus possibles par la présence de niches micro-aérées par la rhizosphère dans cet environnement réducteur. L'expérience de bio-remédiation in situ a montré que les paramètres clés qui contrôlent l'efficacité du traitement sont le niveau de la nappe aquifère et la chimie de l'eau. Les cellules de remédiation se sont montrées plus efficaces et plus rapides lorsque le système a pu être saturé en eau. Finalement, cette étude a montré que la bio-remédiation de déchets miniers par la construction de zones humides est un moyen de traitement efficace, rapide et peu coûteux. Cependant, la saturation en eau du système doit être gérée sur le long terme afin de garantir la stabilité de l'ensemble du système.
The evolution of XY recombination: sexually antagonistic selection versus deleterious mutation load.
Resumo:
Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the "fountain-of-youth" model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via "demasculinization" of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the "fountain of youth" as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.
Resumo:
It is often supposed that a protein's rate of evolution and its amino acid content are determined by the function and anatomy of the protein. Here we examine an alternative possibility, namely that the requirement to specify in the unprocessed RNA, in the vicinity of intron-exon boundaries, information necessary for removal of introns (e.g., exonic splice enhancers) affects both amino acid usage and rates of protein evolution. We find that the majority of amino acids show skewed usage near intron-exon boundaries, and that differences in the trends for the 2-fold and 4-fold blocks of both arginine and leucine show this to be owing to effects mediated at the nucleotide level. More specifically, there is a robust relationship between the extent to which an amino acid is preferred/avoided near boundaries and its enrichment/paucity in splice enhancers. As might then be expected, the rate of evolution is lowest near intron-exon boundaries, at least in part owing to splice enhancers, such that domains flanking intron-exon junctions evolve on average at under half the rate of exon centres from the same gene. In contrast, the rate of evolution of intronless retrogenes is highest near the domains where intron-exon junctions previously resided. The proportion of sequence near intron-exon boundaries is one of the stronger predictors of a protein's rate of evolution in mammals yet described. We conclude that after intron insertion selection favours modification of amino acid content near intron-exon junctions, so as to enable efficient intron removal, these changes then being subject to strong purifying selection even if nonoptimal for protein function. Thus there exists a strong force operating on protein evolution in mammals that is not explained directly in terms of the biology of the protein.