893 resultados para data analysis: algorithms and implementation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entrepreneurial marketing is newly established term and there is need for more specific studies in order to understand the concept fully. SMEs have entrepreneurial marketing elements more visible in their marketing and therefore provide more fruitful insights for this research. SMEs marketing has gained more recognition during the past years and in some cases innovative characteristics can be identified despite constraints such as lack of certain resources. The purpose of this research is to study entrepreneurial marketing characteristics and SME processes in order to wider understanding and gain more insights of entrepreneurial marketing. In addition, planning and implementation of entrepreneurial marketing processes is examined in order to gain full coverage of SMEs marketing activities. The research was conducted as a qualitative research and data gathering was based on semi-structured interview survey, which involved nine company interviews. Multiple case research was used to analyze data so that focus and clarity could be maintained in organized manner. Case companies were chosen from different business fields so that more variation and insights could be identified. The empirical results suggest that two examined processes networking and word-of-mouth communication are very important processes for case companies which supports the previous researches. However, the entrepreneurial marketing characteristics had variation some were more visible and recognizable than others. Examining more closely the processes companies did not fully understand that networking or word-of-mouth marketing could be used as efficiently as other conventional marketing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pipeline for macro- and microarray analyses (PMmA) is a set of scripts with a web interface developed to analyze DNA array data generated by array image quantification software. PMmA is designed for use with single- or double-color array data and to work as a pipeline in five classes (data format, normalization, data analysis, clustering, and array maps). It can also be used as a plugin in the BioArray Software Environment, an open-source database for array analysis, or used in a local version of the web service. All scripts in PMmA were developed in the PERL programming language and statistical analysis functions were implemented in the R statistical language. Consequently, our package is a platform-independent software. Our algorithms can correctly select almost 90% of the differentially expressed genes, showing a superior performance compared to other methods of analysis. The pipeline software has been applied to 1536 expressed sequence tags macroarray public data of sugarcane exposed to cold for 3 to 48 h. PMmA identified thirty cold-responsive genes previously unidentified in this public dataset. Fourteen genes were up-regulated, two had a variable expression and the other fourteen were down-regulated in the treatments. These new findings certainly were a consequence of using a superior statistical analysis approach, since the original study did not take into account the dependence of data variability on the average signal intensity of each gene. The web interface, supplementary information, and the package source code are available, free, to non-commercial users at http://ipe.cbmeg.unicamp.br/pub/PMmA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simplification of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simplification, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simplified models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simplification algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simplification algorithms that have not been surveyed in previous mesh simplification reviews.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new procedures for quickly obtaining accurate information on the physiological potential of seed lots is essential for developing quality control programs for the seed industry. In this study, the effectiveness of an automated system of seedling image analysis (Seed Vigor Imaging System - SVIS) in determining the physiological potential of sun hemp seeds and its relationship with electrical conductivity tests, were evaluated. SVIS evaluations were performed three and four days after sowing and data on the vigor index and the length and uniformity of seedling growth were collected. The electrical conductivity test was made on 50 seed replicates placed in containers with 75 mL of deionised water at 25 ºC and readings were taken after 1, 2, 4, 8 and 16 hours of imbibition. Electrical conductivity measurements at 4 or 8 hours and the use of the SVIS on 3-day old seedlings can effectively detect differences in vigor between different sun hemp seed lots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development, assessment, and implementation of a program evaluation instrument was carried out to evaluate the impact and efficacy of the EMPOWER Program. This intervention was created to educate residents at a shelter for abused women with an anticipated outcome of prevention. Participants included the staff and residents at 2 shelters in Southern Ontario. Client pre, post and follow-up measures were obtained and analyzed statistically and using keyword content analysis. A single staff measure was obtained and summarized using keyword content analysis. Qualitative results were suggestive of important change in participants. All women in the post and follow-up measures believed their participation in the EMPOWER Program provided them with the knowledge, skills, and confidence to avoid abusive relationships in the fliture. This transformational impact was repeatedly expressed in both resident and staff feedback. Limitations of this research, as well as suggestions for future study were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afin d’adresser la variabilité interindividuelle observée dans la réponse pharmacocinétique à de nombreux médicaments, nous avons créé un panel de génotypage personnalisée en utilisant des méthodes de conception et d’élaboration d’essais uniques. Celles-ci ont pour but premier de capturer les variations génétiques présentent dans les gènes clés impliqués dans les processus d'absorption, de distribution, de métabolisme et d’excrétion (ADME) de nombreux agents thérapeutiques. Bien que ces gènes et voies de signalement sont impliqués dans plusieurs mécanismes pharmacocinétiques qui sont bien connues, il y a eu jusqu’à présent peu d'efforts envers l’évaluation simultanée d’un grand nombre de ces gènes moyennant un seul outil expérimental. La recherche pharmacogénomique peut être réalisée en utilisant deux approches: 1) les marqueurs fonctionnels peuvent être utilisés pour présélectionner ou stratifier les populations de patients en se basant sur des états métaboliques connus; 2) les marqueurs Tag peuvent être utilisés pour découvrir de nouvelles corrélations génotype-phénotype. Présentement, il existe un besoin pour un outil de recherche qui englobe un grand nombre de gènes ADME et variantes et dont le contenu est applicable à ces deux modèles d'étude. Dans le cadre de cette thèse, nous avons développé un panel d’essais de génotypage de 3,000 marqueurs génétiques ADME qui peuvent satisfaire ce besoin. Dans le cadre de ce projet, les gènes et marqueurs associés avec la famille ADME ont été sélectionnés en collaboration avec plusieurs groupes du milieu universitaire et de l'industrie pharmaceutique. Pendant trois phases de développement de cet essai de génotypage, le taux de conversion pour 3,000 marqueurs a été amélioré de 83% à 97,4% grâce à l'incorporation de nouvelles stratégies ayant pour but de surmonter les zones d'interférence génomiques comprenant entre autres les régions homologues et les polymorphismes sous-jacent les régions d’intérêt. La précision du panel de génotypage a été validée par l’évaluation de plus de 200 échantillons pour lesquelles les génotypes sont connus pour lesquels nous avons obtenu une concordance > 98%. De plus, une comparaison croisée entre nos données provenant de cet essai et des données obtenues par différentes plateformes technologiques déjà disponibles sur le marché a révélé une concordance globale de > 99,5%. L'efficacité de notre stratégie de conception ont été démontrées par l'utilisation réussie de cet essai dans le cadre de plusieurs projets de recherche où plus de 1,000 échantillons ont été testés. Nous avons entre autre évalué avec succès 150 échantillons hépatiques qui ont été largement caractérisés pour plusieurs phénotypes. Dans ces échantillons, nous avons pu valider 13 gènes ADME avec cis-eQTL précédemment rapportés et de découvrir et de 13 autres gènes ADME avec cis eQTLs qui n'avaient pas été observés en utilisant des méthodes standard. Enfin, à l'appui de ce travail, un outil logiciel a été développé, Opitimus Primer, pour aider pour aider au développement du test. Le logiciel a également été utilisé pour aider à l'enrichissement de cibles génomiques pour d'expériences séquençage. Le contenu ainsi que la conception, l’optimisation et la validation de notre panel le distingue largement de l’ensemble des essais commerciaux couramment disponibles sur le marché qui comprennent soit des marqueurs fonctionnels pour seulement un petit nombre de gènes, ou alors n’offre pas une couverture adéquate pour les gènes connus d’ADME. Nous pouvons ainsi conclure que l’essai que nous avons développé est et continuera certainement d’être un outil d’une grande utilité pour les futures études et essais cliniques dans le domaine de la pharmacocinétique, qui bénéficieraient de l'évaluation d'une longue liste complète de gènes d’ADME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These notes have been prepared as support to a short course on compositional data analysis. Their aim is to transmit the basic concepts and skills for simple applications, thus setting the premises for more advanced projects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By an essential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many compositional situations, such as household budget patterns, time budgets, palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful in such situations. From consideration of such examples it seems sensible to build up a model in two stages, the first determining where the zeros will occur and the second how the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the disadvantages of old age is that there is more past than future: this, however, may be turned into an advantage if the wealth of experience and, hopefully, wisdom gained in the past can be reflected upon and throw some light on possible future trends. To an extent, then, this talk is necessarily personal, certainly nostalgic, but also self critical and inquisitive about our understanding of the discipline of statistics. A number of almost philosophical themes will run through the talk: search for appropriate modelling in relation to the real problem envisaged, emphasis on sensible balances between simplicity and complexity, the relative roles of theory and practice, the nature of communication of inferential ideas to the statistical layman, the inter-related roles of teaching, consultation and research. A list of keywords might be: identification of sample space and its mathematical structure, choices between transform and stay, the role of parametric modelling, the role of a sample space metric, the underused hypothesis lattice, the nature of compositional change, particularly in relation to the modelling of processes. While the main theme will be relevance to compositional data analysis we shall point to substantial implications for general multivariate analysis arising from experience of the development of compositional data analysis…

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examples of compositional data. The simplex, a suitable sample space for compositional data and Aitchison's geometry. R, a free language and environment for statistical computing and graphics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We shall call an n × p data matrix fully-compositional if the rows sum to a constant, and sub-compositional if the variables are a subset of a fully-compositional data set1. Such data occur widely in archaeometry, where it is common to determine the chemical composition of ceramic, glass, metal or other artefacts using techniques such as neutron activation analysis (NAA), inductively coupled plasma spectroscopy (ICPS), X-ray fluorescence analysis (XRF) etc. Interest often centres on whether there are distinct chemical groups within the data and whether, for example, these can be associated with different origins or manufacturing technologies