835 resultados para critically important antimicrobials
Resumo:
The clinical relevance of recovering Aspergillus species in intensive care unit patients is unknown. Diagnosis of invasive pulmonary aspergillosis is extremely difficult because there are no specific tests sensitive enough to detect it. The rapidly fatal prognosis of this infection without treatment justifies early antifungal therapy. A clinical algorithm may aid clinicians to manage critically ill patients from whose respiratory specimens Aspergillus spp. have been isolated. This new tool needs to be validated in a large cohort of patients before it can be recommended.
Resumo:
INTRODUCTION In the critically ill patient, there is a continuous production of reactive oxygen species (ROS) that need to be neutralized to prevent oxidative stress (OS). Quantitatively speaking, the glutathione system (GSH) is the most important anti-oxidant endogenous defense. To increase it, glutamine supplementation has been shown to be effective by protecting against the oxidative damage and reducing the morbimortality. OBJECTIVE To assess the effect of adding an alanylglutamine dipeptide to PN on lipid peroxidation lipidica and glutathione metabolism, as well as its relationship with morbidity in critically ill patients. METHODS Determination through spectrophotometry techniques of glutathione peroxidase, glutathione reductase, total glutathione, and maloniladdehyde at admission adn after seven days of hospitalization at the Intensive Care Unit (ICU) in 20 patients older than 18 years on parenteral nutrition therapy. RESULTS The group of patients receiving parenteral nutrition with glutamine supplementation had significant increases in total glutathione (42.35+/-13 vs 55.29+/-12 micromol/l; p<0.05) and the enzymatic activity of glutathione peroxidasa (470+/-195 vs 705+/-214 micromol/l; p<0.05) within one week of nutritional therapy, whereas the group on conventional parenteral nutrition did not show significant changes of any of the parameters studied (p>0.05). However, both mortality and ICU stay were not different between the study group, whereas the severity (assessed by the SOFA score) was lower in the group of patients receiving glutamine (SOFA 5+/-2 vs 8+/-1.8; p<0.05). CONCLUSIONS Glutamine intake in critically ill patients improves the antioxidant defenses, which leads to lower lipid peroxidation and lower morbidity during admission at the ICU.
Resumo:
Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy
Resumo:
Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.
Resumo:
Trichomonas vaginalis and Tritrichomonas foetus are human and bovine parasites, respectively, that provoke the sexually transmitted disease trichomoniasis. These extracellular parasites adhere to the host epithelial cell surface. Although mucinases and proteases have been described as important proteins for parasite adhesion to epithelial cells, no studies have examined the role of the keratin molecules that cornify the vaginal epithelium. Here, we investigated the interaction of T. vaginalis and T. foetus with human keratin in vitro; additionally, adherence assays were performed in cattle with T. foetus to elucidate whether trichomonads were able to interact with keratin in vivo. We demonstrated that both T. vaginalisand T. foetusinteracted directly with keratin. Additionally, the trichomonads ingested and digested keratin, shedding new light on the Trichomonas infection process.
Resumo:
The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.
Resumo:
BACKGROUND & AIMS By means of this update, the GARIN working group aims to define its position regarding the treatment of patients with diabetes or stress hyperglycaemia and artificial nutrition. In this area there are many aspects of uncertainty, especially in non-critically ill patients. METHODS Bibliographical review, and specific questions in advance were discussed and answered at a meeting in the form of conclusions. RESULTS We propose a definition of stress hyperglycaemia. The indications and access routes for artificial nutrition are no different in patients with diabetes/stress hyperglycaemia than in non-diabetics. The objective must be to keep pre-prandial blood glucose levels between 100 and 140 mg/dl and post-prandial levels between 140 and 180 mg/dl. Hyperglycemia can be prevented through systematic monitoring of capillary glycaemias and adequately calculate energy-protein needs. We recommend using enteral formulas designed for patients with diabetes (high monounsaturated fat) to facilitate metabolic control. The best drug treatment for treating hyperglycaemia/diabetes in hospitalised patients is insulin and we make recommendations for adapt the theoretical insulin action to the nutrition infusion regimen. We also addressed recommendations for future investigation. CONCLUSIONS This recommendations about artificial nutrition in patients with diabetes or stress hyperglycaemia can add value to clinical work.
Resumo:
Adolescence, defined as a transition phase toward autonomy and independence, is a natural time of learning and adjustment, particularly in the setting of long-term goals and personal aspirations. It also is a period of heightened sensation seeking, including risk taking and reckless behaviors, which is a major cause of morbidity and mortality among teenagers. Recent observations suggest that a relative immaturity in frontal cortical neural systems may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors. However, converging preclinical and clinical studies do not support a simple model of frontal cortical immaturity, and there is substantial evidence that adolescents engage in dangerous activities, including drug abuse, despite knowing and understanding the risks involved. Therefore, a current consensus considers that much brain development during adolescence occurs in brain regions and systems that are critically involved in the perception and evaluation of risk and reward, leading to important changes in social and affective processing. Hence, rather than naive, immature and vulnerable, the adolescent brain, particularly the prefrontal cortex, should be considered as prewired for expecting novel experiences. In this perspective, thrill seeking may not represent a danger but rather a window of opportunities permitting the development of cognitive control through multiple experiences. However, if the maturation of brain systems implicated in self-regulation is contextually dependent, it is important to understand which experiences matter most. In particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse episodes of stress or unrestricted access to drugs can shape the adolescent brain and potentially trigger life-long maladaptive responses.
Resumo:
INTRODUCTION For critically patients, enteral immunonutrition results in notable reductions in infections and in length of stay in hospital, but not on mortality, raising the question as to whether this relate to the heterogeneous nature of critically ill patients or to the absence of the altered absorption of specific nutrients within the immunonutrient mix (e.g. iron). Immune-associated functional iron deficiency (FID) is not only one of the many causes or anaemia in the critically ill, but also a cause of inappropriate immune response, leading to a longer duration of episodes of systemic inflammatory response syndrome and poor outcome. OBJECTIVE This prospective cross-sectional study was undertaken to assess the prevalence of FID in critically ill patients during their stay in intensive care (ICU) in order to find the more appropriate population of patients that can benefit from iron therapy. METHOD Full blood cell counts, including reticulocytes (RETIC), serum iron (SI), transferring levels (TRF) and saturation (satTRF), serum TFR receptor (sTfR), ferritin (FRT) and C-reactive protein (CRP) were measured in venous blood samples from 131 random patients admitted to the ICU for at least 24 h (Length of ICU stay, LIS; min: 1 day; max: 38 days). RESULTS Anaemia (Hb < 12 g/dL) was present in 76% of the patients (Hb < 10 g/dL in 33%), hypoferremia (SI < 45 microg/dl) in 69%; satTRF < 20% in 53%; FRT < 100 ng/mL in 23%; sTfR > 2.3 mg/dL in 13%; and CRP > 0.5 mg/dL in 88%. Statistically significant correlations (r of Pearson; *p < 0.05, **p < 0.01) were obtained for serum CRP levels and WBC**, Hb*, TRF**, satTRF*, and FRT**. There was also a strong correlation between TRF and FRT (-0.650**), but not between FRT and satTRF or SI. LIS correlated with Hb*, CRP**, TRF*, satTRF* and FRT**. CONCLUSIONS A large proportion of critically ill patients admitted to the ICU presented the typical functional iron deficiency (FID) of acute inflammation-related anaemia (AIRA). This FID correlates with the inflammatory status and the length of stay at the ICU. However, 21% of the ICU patients with AIRA had an associated real iron deficiency (satTRF < 20; FRT < 100 and sTfR > 2.3). Since oral supplementation of iron seems to be ineffective, all these patients might benefit of iv iron therapy for correction of real or functional iron deficiency, which in turn might help to ameliorate their inflammatory status.
Resumo:
OBJECTIVE: Gaining postpyloric access in ventilated, sedated ICU patients usually requires time-consuming procedures such as endoscopy. Recently, a feeding tube has been introduced that migrates spontaneously into the jejunum in surgical patients. The study aimed at assessing the rate of migration of this tube in critically ill patients. DESIGN: Prospective descriptive trial. SETTING: Surgical ICU in a tertiary University Hospital. PATIENTS: One hundred and five consecutive surgical ICU patients requiring enteral feeding were enrolled, resulting in 128 feeding-tube placement attempts. METHODS: A self-propelled tube was used and followed up for 3 days: progression was assessed by daily contrast-injected X-ray. Severity of illness was assessed with SAPS II and organ failure assessed with SOFA score. RESULTS: The patients were aged 55+/-19 years (mean+/-SD) with SAPS II score of 45+/-18. Of the 128 tube placement attempts, 12 could not be placed in the stomach; eight were accidentally pulled out while in gastric position due to the necessity to avoid fixation during the progression phase. Among organ failures, respiratory failure predominated, followed by cardiovascular. By day 3, the postpyloric progression rate was 63/128 tubes (49%). There was no association between migration and age, or SAPS II score, but the progression rate was significantly poorer in patients with hemodynamic failure. Use of norepinephrine and morphine were negatively associated with tube progression (P<0.001), while abdominal surgery was not. In ten patients, jejunal tubes were placed by endoscopy. CONCLUSION: Self-propelled feeding tubes progressed from the stomach to the postpyloric position in 49% of patients, reducing the number of endoscopic placements: these tubes may facilitate enteral nutrient delivery in the ICU.
Resumo:
PURPOSE OF REVIEW: Invasive fungal infections remain a serious complication for critically ill ICU patients. The aim of this article is to review recent efficacy data of newer antifungal agents for the treatment of invasive candidiasis. The influence that recent epidemiological trends, advances in diagnostic testing, and risk prediction methods exert on the optimization of antifungal therapy for critically ill ICU patients will also be reviewed. RECENT FINDINGS: Recent clinical trials have documented the clinical efficacy of the echinocandins and the newer triazoles for the management of invasive candidiasis. Thus far, resistance to echinocandins remains rare. Changes in the epidemiology of Candida spp. causing invasive candidiasis, such as an increasing relative proportion of non-albicans Candida spp., have not been universally reported, although they have important implications for the use of fluconazole as first-line therapy for invasive candidiasis. Efforts to improve the timeliness and accuracy of laboratory diagnostic techniques and clinical prediction models to allow early and accurately targeted antifungal intervention strategies continue. SUMMARY: Echinocandins, given their clinical efficacy, spectrum of activity, and favourable pharmacological properties, are likely to replace fluconazole as initial antifungal agents of choice among critically ill ICU patients. The optimization of patient outcomes will require more accurately targeted early antifungal intervention strategies based upon sensitive and specific biological and clinical markers of risk.
Resumo:
Idiopathic hypogonadotropic hypogonadism (IHH) is an important human disease model. Investigations of the genetics of IHH have facilitated insights into critical pathways regulating sexual maturation and fertility. IHH has been traditionally considered a monogenic disorder. This model holds that a single gene defect is responsible for the disease in each patient. In the case of IHH, 30% of cases are explained by mutations in one of eleven genes. In recent years, several lines of evidence have challenged the monogenic paradigm in IHH. First, disease-associated mutations display striking incomplete penetrance and variable expressivity within and across IHH families. Second, each locus is responsible for only a small percentage of cases. Third, more than one disease-associated mutation seems to be segregating in some families with IHH, and their combined or separate presence in individuals accounts for the variability in disease severity. Finally, IHH is not strictly a congenital and life-long disorder; occasionally it manifests itself during adulthood (adult-onset IHH); in other cases, the disease is not permanent, as evidenced by normal activity of the hypothalamic-pituitary-gonadal axis after discontinuation of treatment in adulthood (IHH reversal). Together, these observations suggest that IHH is not strictly a monogenic mendelian disease, as previously thought. Rather, it is emerging as a digenic, and potentially oligogenic disease, in which hormonal and/or environmental factors may critically influence genetic predisposition and clinical course. Future investigations of IHH should characterize the extent of the involvement of multiple genes in disease pathogenesis, and elucidate the contributions of epigenetic factors.
Resumo:
ABSTRACT: Critically ill patients are frequently at risk of neurological dysfunction as a result of primary neurological conditions or secondary insults. Determining which aspects of brain function are affected and how best to manage the neurological dysfunction can often be difficult and is complicated by the limited information that can be gained from clinical examination in such patients and the effects of therapies, notably sedation, on neurological function. Methods to measure and monitor brain function have evolved considerably in recent years and now play an important role in the evaluation and management of patients with brain injury. Importantly, no single technique is ideal for all patients and different variables will need to be monitored in different patients; in many patients, a combination of monitoring techniques will be needed. Although clinical studies support the physiologic feasibility and biologic plausibility of management based on information from various monitors, data supporting this concept from randomized trials are still required.
Resumo:
BACKGROUND & AIMS: Nutrition and dietary patterns have been shown to have direct impact on health of the population and of selected patient groups. The beneficial effects have been attributed to the reduction of oxidative damage caused by the normal or excessive free radical production. The papers aims at collecting evidence of successful supplementation strategies. METHODS: Review of the literature reporting on antioxidant supplementation trials in the general population and critically ill patients. RESULTS: Antioxidant vitamin and trace element intakes have been shown to be particularly important in the prevention of cancer, cardiovascular diseases, age related ocular diseases and in aging. In animal models, targeted interventions have been associated with reduction of tissue destruction is brain and myocardium ischemia-reperfusion models. In the critically ill antioxidant supplements have resulted in reduction of organ failure and of infectious complications. CONCLUSIONS: Antioxidant micronutrients have beneficial effects in defined models and pathologies, in the general population and in critical illness: ongoing research encourages this supportive therapeutic approach. Further research is required to determined the optimal micronutrient combinations and the doses required according to timing of intervention.
Resumo:
In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.