875 resultados para constructive heuristic algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. METHODS: We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship 'Prevalence = Incidence x Duration' in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship 'incident = true incident + false incident' and also to the IIR derived from the BED incidence assay. RESULTS: Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R(2) = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. CONCLUSIONS: IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a series of three experiments, participants made inferences about which one of a pair of two objects scored higher on a criterion. The first experiment was designed to contrast the prediction of Probabilistic Mental Model theory (Gigerenzer, Hoffrage, & Kleinbölting, 1991) concerning sampling procedure with the hard-easy effect. The experiment failed to support the theory's prediction that a particular pair of randomly sampled item sets would differ in percentage correct; but the observation that German participants performed practically as well on comparisons between U.S. cities (many of which they did not even recognize) than on comparisons between German cities (about which they knew much more) ultimately led to the formulation of the recognition heuristic. Experiment 2 was a second, this time successful, attempt to unconfound item difficulty and sampling procedure. In Experiment 3, participants' knowledge and recognition of each city was elicited, and how often this could be used to make an inference was manipulated. Choices were consistent with the recognition heuristic in about 80% of the cases when it discriminated and people had no additional knowledge about the recognized city (and in about 90% when they had such knowledge). The frequency with which the heuristic could be used affected the percentage correct, mean confidence, and overconfidence as predicted. The size of the reference class, which was also manipulated, modified these effects in meaningful and theoretically important ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Optimised Search Heuristic that combines a tabu search method with the verification of violated valid inequalities. The solution delivered by the tabu search is partially destroyed by a randomised greedy procedure, and then the valid inequalities are used to guide the reconstruction of a complete solution. An application of the new method to the Job-Shop Scheduling problem is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This pilot study aims at assessing Constructive Thinking in a sample of adolescent offenders and in a normative sample of adolescents. Method: 66 adolescent offenders (12-18 years) were compared to 540 control adolescents on the different subscales of the "Constructive Thinking Inventory". Results and Conclusion: Adolescent offenders show a less efficient Constructive Thinking: they show cognitive styles that may hamper their ability to take appropriate decisions when facing stressful situations, increasing self-defeating behaviors. Interventions may focus on improving adequate coping with stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have reported high performance of simple decision heuristics multi-attribute decision making. In this paper, we focus on situations where attributes are binary and analyze the performance of Deterministic-Elimination-By-Aspects (DEBA) and similar decision heuristics. We consider non-increasing weights and two probabilistic models for the attribute values: one where attribute values are independent Bernoulli randomvariables; the other one where they are binary random variables with inter-attribute positive correlations. Using these models, we show that good performance of DEBA is explained by the presence of cumulative as opposed to simple dominance. We therefore introduce the concepts of cumulative dominance compliance and fully cumulative dominance compliance and show that DEBA satisfies those properties. We derive a lower bound with which cumulative dominance compliant heuristics will choose a best alternative and show that, even with many attributes, this is not small. We also derive an upper bound for the expected loss of fully cumulative compliance heuristics and show that this is moderateeven when the number of attributes is large. Both bounds are independent of the values ofthe weights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the issue of the optimal behaviour of the Lender of Last Resort (LOLR) in its microeconomic role regarding individual financial institutions in distress. It has been argued that the LOLR should not intervene at the microeconomic level and let any defaulting institution face the market discipline, as it will be confronted with the consequences of the risks it has taken. By considering a simple costbenefit analysis we show that this position may lack a sufficient foundation. We establish that, instead, uder reasonable assumptions, the optimal policy has to be conditional on the amount of uninsured debt issued by the defaulting bank. Yet in equilibrium, because the rescue policy is costly, the LOLR will not rescue all the banks that fulfill the uninsured debt requirement condition, but will follow a mixed strategy. This we interpret as the confirmation of the "creative ambiguity" principle, perfectly in line with the central bankers claim that it is efficient for them to have discretion in lending to individual institutions. Alternatively, in other cases, when the social cost of a bank's bankruptcy is too high, it is optimal for the LOLR to bail out the insititution, and this gives support to the "too big to fail" policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on judgment and decision making presents a confusing picture of human abilities. For example, much research has emphasized the dysfunctional aspects of judgmental heuristics, and yet, other findings suggest that these can be highly effective. A further line of research has modeled judgment as resulting from as if linear models. This paper illuminates the distinctions in these approaches by providing a common analytical framework based on the central theoretical premise that understanding human performance requires specifying how characteristics of the decision rules people use interact with the demands of the tasks they face. Our work synthesizes the analytical tools of lens model research with novel methodology developed to specify the effectiveness of heuristics in different environments and allows direct comparisons between the different approaches. We illustrate with both theoretical analyses and simulations. We further link our results to the empirical literature by a meta-analysis of lens model studies and estimate both human andheuristic performance in the same tasks. Our results highlight the trade-off betweenlinear models and heuristics. Whereas the former are cognitively demanding, the latterare simple to use. However, they require knowledge and thus maps of when andwhich heuristic to employ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a simple Optimised Search Heuristic for the Job Shop Scheduling problem that combines a GRASP heuristic with a branch-and-bound algorithm. The proposed method is compared with similar approaches and leads to better results in terms of solution quality and computing times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PRECON S.A is a manufacturing company dedicated to produce prefabricatedconcrete parts to several industries as rail transportation andagricultural industries.Recently, PRECON signed a contract with RENFE,the Spanish Nnational Rail Transportation Company to manufacturepre-stressed concrete sleepers for siding of the new railways of the highspeed train AVE. The scheduling problem associated with the manufacturingprocess of the sleepers is very complex since it involves severalconstraints and objectives. The constraints are related with productioncapacity, the quantity of available moulds, satisfying demand and otheroperational constraints. The two main objectives are related withmaximizing the usage of the manufacturing resources and minimizing themoulds movements. We developed a deterministic crowding genetic algorithmfor this multiobjective problem. The algorithm has proved to be a powerfuland flexible tool to solve the large-scale instance of this complex realscheduling problem.