1000 resultados para compiler testing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miniaturization of devices and the ensuing decrease in the threshold voltage has led to a substantial increase in the leakage component of the total processor energy consumption. Relatively simpler issue logic and the presence of a large number of function units in the VLIW and the clustered VLIW architectures attribute a large fraction of this leakage energy consumption in the functional units. However, functional units are not fully utilized in the VLIW architectures because of the inherent variations in the ILP of the programs. This underutilization is even more pronounced in the context of clustered VLIW architectures because of the contentions for the limited number of slow intercluster communication channels which lead to many short idle cycles.In the past, some architectural schemes have been proposed to obtain leakage energy bene .ts by aggressively exploiting the idleness of functional units. However, presence of many short idle cycles cause frequent transitions from the active mode to the sleep mode and vice-versa and adversely a ffects the energy benefits of a purely hardware based scheme. In this paper, we propose and evaluate a compiler instruction scheduling algorithm that assist such a hardware based scheme in the context of VLIW and clustered VLIW architectures. The proposed scheme exploits the scheduling slacks of instructions to orchestrate the functional unit mapping with the objective of reducing the number of transitions in functional units thereby keeping them off for a longer duration. The proposed compiler-assisted scheme obtains a further 12% reduction of energy consumption of functional units with negligible performance degradation over a hardware-only scheme for a VLIW architecture. The benefits are 15% and 17% in the context of a 2-clustered and a 4-clustered VLIW architecture respectively. Our test bed uses the Trimaran compiler infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method of partial automation of specification based regression testing, which we call ESSE (Explicit State Space Enumeration). The first step in ESSE method is the extraction of a finite state model of the system making use of an already tested version of the system under test (SUT). Thereafter, the finite state model thus obtained is used to compute good test sequences that can be used to regression test subsequent versions of the system. We present two new algorithms for test sequence computation - both based on our finite state model generated by the above method. We also provide the details and results of the experimental evaluation of ESSE method. Comparison with a practically used random-testing algorithm has shown substantial improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple algorithms have been developed to generate pairs of minterms forming a given 2-sum and thereby to test 2-asummability of switching functions. The 2-asummability testing procedure can be easily implemented on the computer. Since 2-asummability is a necessary and sufficient condition for a switching function of upto eight variables to be linearly separable (LS), it can be used for testing LS switching functions of upto eight variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editors' note:Flexible, large-area display and sensor arrays are finding growing applications in multimedia and future smart homes. This article first analyzes and compares current flexible devices, then discusses the implementation, requirements, and testing of flexible sensor arrays.—Jiun-Lang Huang (National Taiwan University) and Kwang-Ting (Tim) Cheng (University of California, Santa Barbara)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most taxa, species boundaries are inferred based on differences in morphology or DNA sequences revealed by taxonomic or phylogenetic analyses. In crickets, acoustic mating signals or calling songs have species-specific structures and provide a third data set to infer species boundaries. We examined the concordance in species boundaries obtained using acoustic, morphological, and molecular data sets in the field cricket genus Itaropsis. This genus is currently described by only one valid species, Itaropsis tenella, with a broad distribution in western peninsular India and Sri Lanka. Calling songs of males sampled from four sites in peninsular India exhibited significant differences in a number of call features, suggesting the existence of multiple species. Cluster analysis of the acoustic data, molecular phylogenetic analyses, and phylogenetic analyses combining all data sets suggested the existence of three clades. Whatever the differences in calling signals, no full congruence was obtained between all the data sets, even though the resultant lineages were largely concordant with the acoustic clusters. The genus Itaropsis could thus be represented by three morphologically cryptic incipient species in peninsular India; their distributions are congruent with usual patterns of endemism in the Western Ghats, India. Song evolution is analysed through the divergence in syllable period, syllable and call duration, and dominant frequency.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new six-component accelerometer force balance is developed and used in the HST2 shock tunnel of Indian Institute of Science. Aerodynamic forces and moments for a hypersonic slender body measured using this balance system at a free stream Mach number of 5.75 and Reynolds number of 1.5 million and stagnation enthalpy of 1.5 and 2 MJ/kg are presented. These measured values compare well with the theoretical values estimated using modified Newtonian theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving the clock speed, reducing the energy consumption of the logic, and making the design simpler, it introduces extra overheads by way of inter-cluster communication. This communication happens over long global wires having high load capacitance which leads to delay in execution and significantly high energy consumption. Inter-cluster communication also introduces many short idle cycles, thereby significantly increasing the overall leakage energy consumption in the functional units. The trend towards miniaturization of devices (and associated reduction in threshold voltage) makes energy consumption in interconnects and functional units even worse, and limits the usability of clustered architectures in smaller technologies. However, technological advancements now permit the design of interconnects and functional units with varying performance and power modes. In this paper, we propose scheduling algorithms that aggregate the scheduling slack of instructions and communication slack of data values to exploit the low-power modes of functional units and interconnects. Finally, we present a synergistic combination of these algorithms that simultaneously saves energy in functional units and interconnects to improves the usability of clustered architectures by achieving better overall energy-performance trade-offs. Even with conservative estimates of the contribution of the functional units and interconnects to the overall processor energy consumption, the proposed combined scheme obtains on average 8% and 10% improvement in overall energy-delay product with 3.5% and 2% performance degradation for a 2-clustered and a 4-clustered machine, respectively. We present a detailed experimental evaluation of the proposed schemes. Our test bed uses the Trimaran compiler infrastructure. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software transactional memory (STM) is a promising programming paradigm for shared memory multithreaded programs. In order for STMs to be adopted widely for performance critical software, understanding and improving the cache performance of applications running on STM becomes increasingly crucial, as the performance gap between processor and memory continues to grow. In this paper, we present the most detailed experimental evaluation to date, of the cache behavior of STM applications and quantify the impact of the different STM factors on the cache misses experienced by the applications. We find that STMs are not cache friendly, with the data cache stall cycles contributing to more than 50% of the execution cycles in a majority of the benchmarks. We find that on an average, misses occurring inside the STM account for 62% of total data cache miss latency cycles experienced by the applications and the cache performance is impacted adversely due to certain inherent characteristics of the STM itself. The above observations motivate us to propose a set of specific compiler transformations targeted at making the STMs cache friendly. We find that STM's fine grained and application unaware locking is a major contributor to its poor cache behavior. Hence we propose selective Lock Data co-location (LDC) and Redundant Lock Access Removal (RLAR) to address the lock access misses. We find that even transactions that are completely disjoint access parallel, suffer from costly coherence misses caused by the centralized global time stamp updates and hence we propose the Selective Per-Partition Time Stamp (SPTS) transformation to address this. We show that our transformations are effective in improving the cache behavior of STM applications by reducing the data cache miss latency by 20.15% to 37.14% and improving execution time by 18.32% to 33.12% in five of the 8 STAMP applications.