924 resultados para chemical synthesis
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specific corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specific mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most efficient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specific and unique siRNA sequences (Stealth RNai (TM)). Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (172 bp in exon 2; and 108 bp in exon 6; NM003401) genes were chosen to generate dsRNA for subsequent "Dicing" to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80 degrees C. Alternatively, chemically synthesized Stealth siRNAs were designed and generated to match two very specific gene sequence regions for each target gene of interest (Ku70 and Xrcc4). HCT116 cells were plated at 30% confluence in 24- or 6-well culture plates. The next day, cells were transfected by lipofection with either Diced or Stealth siRNAs for Ku70 or Xrcc4, in duplicate, at various doses, with blank and sham transfections used as controls. Cells were harvested at 0, 24, 48, 72 and 96 h post-transfection for protein determination. The knockdown of specific targeted gene products was quantified by Western blot using GAPDH as control. Transfection of gene-specific siRNA to either Ku70 or Xrcc4 with both Diced and Stealth siRNAs resulted in a down regulation of the targeted proteins to approximately 10 to 20% of control levels 48 h after transfection, with recovery to pre-treatment levels by 96 h. Discussion: By transfecting cells with Diced or chemically synthesized Stealth siRNAs, Ku70 and Xrcc4, two highly expressed proteins in cells, were effectively attenuated, demonstrating the great potential for the use of both siRNA production strategies as tools to perform loss of function experiments in mammalian cells. In fact, down-regulation of Ku70 and Xrcc4 has been shown to reduce the activity of the non-homologous end joining DNA pathway, a very desirable approach for the use of homologous recombination technology for gene targeting or knockout studies. Stealth RNAi (TM) was developed to achieve high specificity and greater stability when compared with mixtures of enzymatically-produced (Diced) siRNA fragments. In this study, both siRNA approaches inhibited the expression of Ku70 and Xrcc4 gene products, with no detectable toxic effects to the cells in culture. However, similar knockdown effects using Diced siRNAs were only attained at concentrations 10-fold higher than with Stealth siRNAs. The application of RNAi technology will expand and continue to provide new insights into gene regulation and as potential applications for new therapies, transgenic animal production and basic research.
Resumo:
This study evaluated the antioxidant activity of five resveratrol analogs by relating the activity of the molecule with its chemical structure. The five resveratrol analogs were synthesized and the antioxidant activity was evaluated using the DPPH method. The resveratrol was used as the reference standard. A descriptive statistical analysis and ANOVA followed by the Tukey test, with the aid of software. The antioxidant activity of resveratrol analogs was considered statistically different, with the analog A which showed activity superior to the others. The five analogs presented lower antioxidant activity than the reference standard (p <0.001). According to the findings, hydroxylation was the molecular modification that gave the best evaluated antioxidant activity result. Resveratrol analogs may have an important antioxidative activity, but with the one with the higher IC50 was presented by the natural compound.
Resumo:
Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.
Resumo:
Isotibolone is frequently found as an impurity in tibolone, a drug used for hormone reposition of post-menopause women, due to some inadequate tibolone synthesis or as a result of degradation during drug storage. The presence of isotibolone impurities should be detected and quantified in active pharmaceutical ingredient products of tibolone before its use in the manufacturing of medicaments. The X-ray powder diffraction technique offers the possibility of quantifying isotibolone amounts at different stages of drug production and storage, from the chemical synthesis to the final formulation. In the course of a study involving the quantitative analysis of isotibolone by X-ray powder diffraction, the authors determined the structure of the title compound using a recently developed approach (A. Gomez and S. Kycia, J. Appl. Crystallogr. 2011, 44, 708-713). The structure is monoclinic, space group P2(1) (4), with unit cell parameters a = 6.80704(7) angstrom, b = 20.73858(18) angstrom, c = 6.44900(6) angstrom, beta = 76.4302(5)degrees, V = 884.980(15) angstrom(3) and two molecules per unit cell (Z = 2). The molecules are hydrogen bonded in the ab plane forming layers that are held together in the crystal by van der Waals interactions along the c-axis.
Resumo:
A low-energy new method based in a one-step synthesis at room temperature produces very small maghemite nanopar ticles. The fast neutralization reaction (co-precipitation) of a ferric solution (FeCl3 aqueous) in a basic medium (NH4OH concentrated) produces an intermediate phase, presumably two-line ferrihydrite, that in oxidizing conditions is transformed to maghemite nanopar ticles. That “primordial soup” is characterized by small atom arrangements that are the base for maghemite tiny crystals. The final product of the reaction was characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray absorption fine structure, Mössbauer spectroscopy, and magnetometry.
Resumo:
In the present study, thin functional conducting polyaniline (PANI) films, either doped or undoped, patterned or unpatterned, were prepared by different approaches. The properties of the obtained PANI films were investigated in detail by a combination of electrochemistry with several other techniques, such as SPR, QCM, SPFS, diffraction, etc. The sensing applications (especially biosensing applications) of the prepared PANI films were explored. Firstly, the pure PANI films were prepared by the electropolymerisation method and their doping/dedoping properties in acidic conditions were investigated in detail by a combination of electrochemistry with SPR and QCM. Dielectric constants of PANI at different oxidation states were obtained quantitatively. The results obtained here laid a good foundation for the following investigations of PANI films in neutral pH conditions. Next, PANI multilayer films doped by a variety of materials were prepared by the layer-by-layer method in order to explore their biosensing applications, because of the loss of redox activity of pure PANI in neutral pH conditions. The dopants used include not only the traditionally used linear polyelectrolytes, but also, for the first tim, some other novel materials, like modified gold nanoparticles or modified carbon nanotubes. Our results showed that all the used dopants could form stable multilayer films with PANI. All the obtained PANI multilayer films showed good redox activity in a neutral pH environment, which makes them feasible for bioassays. We found that all the prepared PANI multilayer films can electrocatalyze the oxidation of NADH in neutral conditions at a low potential, although their catalytic efficiencies are different. Among them, PANI/carbon nanotube system showed the highest catalytic efficiency toward the oxidation of NADH, which makes it a good candidate as a NADH sensor. Besides, because some of the prepared PANI multilayer systems were end-terminated with –COOH groups (like PANI/Au nanoparticles system), which can be utilized to easily link biomolecules for biosensing applications. Here, we demonstrated, for the first time, to use the prepared PANI multilayer films for the DNA hybridisation detection. The detection event was monitored either by direct electrochemical method, or by enzyme-amplified electrochemical method, or by surface plasmon enhanced fluorescence spectroscopic method. All the methods can effectively differentiate non-complementary DNA from the complementary ones, even at the single-base mismatch level. It should also be noted that, our success in fabricating PANI multilayer films with modified Au nanoparticles or carbon nanotubes also offered another novel method for incorporating such novel materials into (conducting) polymers. Because of the unique electrochemical and optical properties of each component of the obtained PANI multilayer films, they should also find potential applications in many other fields such as microelectronics, or for electrochromic and photovoltaic devices. Finally, patterned PANI films were fabricated by the combination of several patterning techniques, such as the combination of electrocopolymerization with micromolding in capillaries (EP-MIMIC), the combination of microcontact printing with the layer-by-layer technique (µCP-LBL), and the polystyrene (PS) template induced electropolymerisation method. Using the obtained stripe-shaped PANI/PSS film, a redox-switchable polymer grating based on the surface-plasmon-enhanced mode was constructed and its application in the field of biosensing was explored. It was found that the diffraction efficiency (DE) of the grating was very sensitive to the applied potential (i.e. redox state of the film) as well as the pH environment of the dielectric medium. Moreover, the DE could also be effectively tuned by an electrocatalytic event, such as the electrocatalytic oxidation of NADH by the grating film. By using PS colloidal crystal assemblies as templates, well-ordered 3D interconnected macroporous PANI arrays (PANI inverse opals) were fabricated via electropolymerisation method. The quality of the obtained inverse opals was much higher than those reported by chemical synthesis method. By electrochemical method, the structures of the prepared inverse opals can be easily controlled. To explore the possible biosensing applications of PANI inverse opals, efforts were also done toward the fabrication of PANI composite inverse opals. By selecting proper dopants, high quality inverse opals of PANI composites were fabricated for the first time. And the obtained opaline films remained redox-active in neutral pH conditions, pointing to their possible applications for electrobioassays.
Resumo:
Selektine sind eine Gruppe von Transmembranglycoproteinen, welche als Adhäsionsmoleküle innerhalb des vaskulären Systems Zelladhäsionsprozesse zwischen Leukozyten und Endothelzellen vermitteln. Das Sialyl-Lewisa Epitop und verwandte Kohlenhydratstrukturen wurden als Liganden der E- und P-Selektine identifiziert. Durch die chemische Synthese verwandter Strukturen verspricht man sich, die im Laufe inflammatorischer Prozesse exprimierten Rezeptoren gezielt blockieren zu können und dadurch pathologische Abläufe wie hämatogene Metastasierungen oder Abstoßungsreaktionen zu bekämpfen. Einige Bereiche der Aminosäuresequenz des E-Selektin-Ligand-1 (ESL-1) treten hochkonservativ auch in anderen Selektinliganden wie MG160 oder PSGL-1 auf und wurden deshalb für die N-Glycosylierung mit einem sulfatierten Oligosaccharid ausgewählt (11). -Val665-Glu-Cys-Arg-Asp-Ile-Val-Gly-Asn(Sulfo-Lea)-Leu-Tyr-Glu-Leu-Glu-Ser-Glu-Asp-Ile682- 11 Im ersten Teil der Arbeit wurde eine Strategie ausgearbeitet, das sulfatierte Trisaccharid 60 im Multigrammaßstab zu synthetisieren. Der endogene Ligand 2 wurde an drei Positionen modifiziert: Austausch der α-L-Fucose gegen die biologisch stabilere α-D-Arabinose, Einführung einer Sulfatgruppe anstelle der N-Acetylneuraminsäure sowie Übergang von O- zu N-glykosidischer Verknüpfung. Die hochregioselektive Einführung der Sulfatgruppe gelingt in sehr guten Ausbeuten durch Vorkomplexierung mit Dibutylzinnoxid und anschließende Umsetzung mit Schwefeltrioxid/Trimethylamin. Durch die Verwendung des anomeren Azids als permanente Schutzgruppe kann das Trisaccharid nach schonender Reduktion zum Amin an ein Asparaginsäurederivat angekuppelt und in einer linearen Synthese nach Fmoc-Strategie als N-Glycosylaminosäure in die Synthese eingebracht werden. Das in der Arbeitsgruppe Kunz entwickelte PTMSEL-Ankersystem 20a erlaubt sowohl die problemlose Synthese als auch die Abspaltung vom polymeren Träger unter sehr milden Bedingungen. Nach dem Entfernen der Benzylester und -ether durch Pd(0) – katalysierte Hydrierung können sulfatierte Glycopeptidsequenzen des Typs 11 über NMR-Spektroskopie (korrelierte Spektren) und Massenspektroskopie (ESI, MALDI) identifiziert werden.
Resumo:
Die DNA-Doppelhelix ist eine relativ dicke (Ø ≈ 2 nm), kompakte und dadurch auf kurzen Längenskalen relativ steife Verbindung (lp[dsDNA] ≈ 50-60 nm), mit einer klar definierten Struktur, die durch biologische Methoden sehr präzise manipuliert werden kann. Die Auswirkungen der primären Sequenz auf die dreidimensionale Strukturbildung ist gut verstanden und exakt vorhersagbar. Des Weiteren kann DNA an verschiedenen Stellen mit anderen Molekülen verknüpft werden, ohne dass ihre Selbsterkennung gestört wird. Durch die helikale Struktur besteht außerdem ein Zusammenhang zwischen der Lage und der räumlichen Orientierung von eingeführten Modifikationen. Durch moderne Syntheseverfahren lassen sich beliebige Oligonukleotidsequenzen im Bereich bis etwa 150-200 Basen relativ preiswert im Milligrammmaßstab herstellen. Diese Eigenschaften machen die DNA zu einem idealen Kandidaten zur Erzeugung komplexer Strukturen, die durch Selbsterkennung der entsprechenden Sequenzen gebildet werden. In der hier vorgelegten Arbeit wurden einzelsträngige DNA-Abschnitte (ssDNA) als adressierbare Verknüpfungsstellen eingesetzt, um verschiedene molekulare Bausteine zu diskreten nicht periodischen Strukturen zu verbinden. Als Bausteine dienten flexible synthetische Polymerblöcke und semiflexible Doppelstrang-DNA-Abschnitte (dsDNA), die an beiden Enden mit unterschiedlichen Oligonukleotidsequenzen „funktionalisiert“ sind. Die zur Verknüpfung genutzten Oligonukleotidabschnitte wurden so gewählt (n > 20 Basen), dass ihre Hybridisierung zu einer bei Raumtemperatur stabilen Doppelstrangbildung führt. Durch Kombination der Phosphoramiditsynthese von DNA mit einer festkörpergestützten Blockkopplungsreaktion konnte am Beispiel von Polyethylenoxiden ein sehr effektiver Syntheseweg zur Herstellung von ssDNA1-PEO-ssDNA2-Triblockcopolymeren entwickelt werden, der sich problemlos auf andere Polymere übertragen lassen sollte. Die Längen und Basenabfolgen der beiden Oligonukleotidsequenzen können dabei unabhängig voneinander frei gewählt werden. Somit wurden die Voraussetzungen geschaffen, um die Selbsterkennung von Oligonukleotiden durch Kombination verschiedener Triblockcopolymere zur Erzeugung von Multiblockcopolymeren zu nutzen, die mit klassischen Synthesetechniken nicht zugänglich sind. Semiflexible Strukturelemente lassen sich durch die Synthese von Doppelstrangfragmenten mit langen überstehenden Enden (sticky-ends) realisieren. Die klassischen Ansätze der molekularen Genetik zur Erzeugung von sticky-ends sind in diesem Fall nicht praktikabel, da sie zu Einschränkungen im Bezug auf Länge und Sequenz der überhängenden Enden führen. Als Methode der Wahl haben sich zwei verschiedene Varianten der Polymerase Kettenreaktion (PCR) erwiesen, die auf der Verwendung von teilkomplementären Primern beruhen. Die eigentlichen Primersequenzen wurden am 5´-Ende entweder über ein 2´-Desoxyuridin oder über einen kurzen Polyethylenoxid-Spacer (n = 6) mit einer frei wählbaren „sticky-end-Sequenz“ verknüpft. Mit diesen Methoden sind sowohl 3´- als auch 5´-Überhänge zugänglich und die Länge der Doppelstrangabschnitte kann über einen breiten Molmassenbereich sehr exakt eingestellt werden. Durch Kombination derartiger Doppelstrangfragmente mit den biosynthetischen Triblockcopolymeren lassen sich Strukturen erzeugen, die als Modellsysteme zur Untersuchung verschiedener Biomoleküle genutzt werden können, die in Form eines mehrfach gebrochenen Stäbchens vorliegen. Im letzten Abschnitt wurde gezeigt, dass durch geeignete Wahl der überstehenden Enden bzw. durch Hybridisierung der Doppelstrangfragmente mit passenden Oligonukleotiden verzweigte DNA-Strukturen mit Armlängen von einigen hundert Nanometern zugänglich sind. Im Vergleich zu den bisher veröffentlichten Methoden bietet diese Herangehensweise zwei entscheidende Vorteile: Zum einen konnte der Syntheseaufwand auf ein Minimum reduziert werden, zum anderen ist es auf diesem Weg möglich die Längen der einzelnen Arme, unabhängig voneinander, über einen breiten Molmassenbereich zu variieren.
Resumo:
Parasiten der Apicomplexa umfassen sowohl humanpathogene, als auch tierpathogene Protozoen. Beispiele für wichtige Vertreter human- und tierpathogener Parasiten sind Plasmodium falciparum und Eimeria tenella. E. tenella verursacht die Kokzidiose des Hühnchens, eine Darmerkrankung die weltweit für Verluste in einer geschätzten Höhe von bis zu 3 Milliarden US$ verantwortlich zeichnet. Eine prophylaktische Vakzinierung gegen diese Krankheit ist ökonomisch meist ineffizient, und eine Behandlung mit Kokzidiostatika wird durch häufige Resistenzbildung gegen bekannte Wirkstoffe erschwert. Diese Situation erfordert die Entwicklung neuer kostengünstiger Alternativen. Geeignete Zielproteine für die Entwicklung neuartiger Arzneistoffe zur Behandlung der Kokzidiose sind die Zyklin-abhängigen Kinasen (CDKs), zu denen auch die CDK-related Kinase 2 (EtCRK2) aus E. tenella gehört. Diese Proteine sind maßgeblich an der Regulation des Zellzyklus beteiligt. Durch chemische Validierung mit dem CDK Inhibitor Flavopiridol konnte nachgewiesen werden, dass ein Funktionsverlust von CDKs in E. tenella die Vermehrung des Parasiten in Zellkultur inhibiert. E. tenella CDKs sind daher als Zielproteine für die Entwicklung einer Chemotherapie der Kokzidiose geeignet. Mittels bioinformatischer Tiefenanalysen sollten CDK Proteine im Parasiten E. tenella identifiziert werden. Das Genom von E. tenella liegt in Rohfassung vor [ftp://ftp.sanger.ac.uk]. Jedoch waren zum Zeitpunkt dieser Arbeiten viele Sequenzen des Genoms noch nicht annotiert. Homologe CDK Proteine von E. tenella konnten durch den Vergleich von Sequenzinformationen mit anderen Organismen der Apicomplexa identifiziert und analysiert werden. Durch diese Analysen konnten neben der bereits bekannten EtCRK2, drei weitere, bislang nicht annotierte CDKs in E. tenella identifiziert werden (EtCRK1, EtCRK3 sowie EtMRK). Darüber hinaus wurde eine Analyse der entsprechenden Zykline – der Aktivatoren der CDKs – bezüglich Funktion und Struktur, sowie eine Datenbanksuche nach bisher nicht beschriebenen Zyklinen in E. tenella durchgeführt. Diese Suchen ergaben vier neue potentielle Zykline für E. tenella, wovon EtCYC3a als Aktivator der EtCRK2 von María L. Suárez Fernández (Intervet Innovation GmbH, Schwabenheim) bestätigt werden konnte. Sequenzvergleiche lassen vermuten, dass auch EtCYC1 und EtCYC3b in der Lage sind, EtCRK2 zu aktivieren. Außerdem ist anzunehmen, dass EtCYC4 als Aktivator der EtCRK1 fungiert. Ein weiterer Schwerpunkt der vorliegenden Arbeit war die Suche und Optimierung nach neuen Inhibitoren von CDKs aus E. tenella. In vorangegangenen Arbeiten konnten bereits Inhibitoren der EtCRK2 gefunden werden [BEYER, 2007]. Mittels Substruktur- und Ähnlichkeitssuchen konnten im Rahmen dieser Arbeit weitere Inhibitoren der EtCRK2 identifiziert werden. Vier dieser Strukturklassen erfüllen die Kriterien einer Leitstruktur. Eine dieser Leitstrukturen gehört zur Strukturklasse der Benzimidazol-Carbonitrile und ist bislang nicht als Inhibitor anderer Kinasen beschrieben. Diese neu identifizierte Leitstruktur konnte in silico weiter optimiert werden. Im Rahmen dieser Arbeit wurden Bindungsenergien von Vertretern dieser Strukturklasse berechnet, um einen wahrscheinlichen Bindemodus vorherzusagen. Für die weiterführende in silico Optimierung wurde eine virtuelle kombinatorische Substanzbibliothek dieser Klasse erstellt. Die Auswahl geeigneter Verbindungen für eine chemische Synthese erfolgte durch molekulares Docking unter Nutzung von Homologiemodellen der EtCRK2. Darüber hinaus wurde ein in silico Screening nach potentiellen Inhibitoren der PfMRK und EtMRK durchgeführt. Dabei konnten weitere interessante virtuelle Hit-Strukturen aus einer Substanzdatenbank kommerziell erhältlicher Verbindungen gefunden werden. Durch dieses virtuelle Screening konnten jeweils sieben Verbindungen als virtuelle Hits der PfMRK sowie der EtMRK identifiziert werden. Die Häufung von Strukturklassen mit bekannter CDK Aktivität deutet darauf hin, dass während des virtuellen Screenings eine Anreicherung von CDK Inhibitoren stattgefunden hat. Diese Ergebnisse lassen auf eine Weiterentwicklung neuer Wirkstoffe gegen Kokzidiose und Malaria hoffen.
Resumo:
Eine Immuntherapie von Tumorerkrankungen, die mit Hilfe von Antitumorimpfstoffen prophylaktisch und therapeutisch erfolgen könnte, wäre eine attraktive Alternative zu den bisher angewendeten Krebsbehandlungen. Aufgrund charakteristisch veränderter Aktivitäten von Glycosyltransferasen in der Glycoprotein-Biosynthese werden auf malignen Zellen stark verkürzte, frühzeitig sialylierte mucinartige Glycoproteine exprimiert. Diese verkürzten Kohlenhydrate repräsentieren tumorassoziierte Antigene. Sie haben zur Folge, dass Peptidepitope der Mucin-Glycoproteine, die auf gesundem Gewebe durch den hohen Glycosylierungsgrad maskiert sind, für das Immunsystem freiliegen. Diese Strukturunterschiede sollten einen selektiven Angriff auf das Tumorgewebe erlauben, ohne dass gesundes Gewebe beeinträchtigt wird, wenn es gelänge, das Immunsystem auf diese veränderten Strukturelemente zu fokussieren. Dabei ist es wichtig, dass die Immunantwort mit synthetisch definierten Glycopeptidepitopen ausgelöst wird, um Autoimmunreaktionen zu vermeiden. Somit ist die Synthese von exakt definierten tumorassoziierten Glycopeptiden von zentraler Bedeutung für die Entwicklung eines Antitumor-Impfstoffes. rnDa die tumorassoziierten Kohlenhydratstrukturen Antigene darstellen, die vom Immunsystem weitgehend toleriert werden, ist es notwendig, ihre Immunogenität mit Hilfe immunstimulierender Epitope so zu erhöhen, dass eine effiziente Immunreaktion erfolgt. Nach diesem Konzept wurden in der vorliegenden Arbeit Methoden und Strategien entwickelt, synthetische Impfstoff-Konjugate zu synthetisieren und immunologisch in Mausexperimenten zu evaluieren. So konnte gezeigt werden, das mit vollsynthetischen Analoga aus tumorassoziierten Glycopeptid-Oberflächenmolekülen in Kombination mit immunstimulierenden Substanzen, wie Trägerproteinen oder Mitogenen, hochselektive humorale Immunantworten ausgelöst werden können.rn