943 resultados para bioactive compunds
Resumo:
In the scope of our ongoing research on bioactive agents from natural sources, 24 extracts and fractions obtained from Piper arboreum Aub. and Piper tuberculatum Jacq. ( Piperaceae) were screened for antifungal activity by using broth microdilution method. The current investigation reveals that P. arboreum extracts and fractions were more effective against Candida krusei and Candida parapsilosis than Cryptococcus neoformans. The growth of Candida albicans was weakly affected by all the tested extracts and fractions. The strongest effects were observed for hexane and ethyl acetate fractions from leaves of P. arboreum, with MIC values ( in mu g/ml) of 15.6 and 31.2 mu g/ml against C. krusei, respectively. Additionally, phytochemical investigation of the hexane fraction of P. arboreum leaves furnished 3 pyrrolidine amides; piperyline, 4,5-dihydropiperyline and tetrahydropiperyline, which could be responsible, at least in part for the observed antifungal activity. The most active compound, tetrahydropiperyline, displayed MIC values of 15.6 mu g/ml against C. krusei, C. parapsilosis and C. neoformans.
Resumo:
Recent surveys have identified anthelmintic effects from many bioactive substances particularly from condensed tannin (CT) sources. The aims of the present study were to investigate the potential anthelmintic effects of condensed tannins (CT) on Trichostrongylus colubriformis in experimentally infected sheep and the nutritional consequences on animals. Twenty helminth-free lambs were divided into five groups of four animals. Groups I to IV were artificially infected with 6,000 third stage larvae (L3) of T. colubriformis. Group I was the infected control and group V was the uninfected control. Twenty-eight days post-infection (p.i.) lambs from GII were supplemented with tanniniferous sorghum (350 g/animal/day, during seven days); GIII were drenched with Acacia mearnsii extract (15% CT) for just one day and GIV during two days (1.6 g extract/kg BW). At day 36 p.i., animals from infected group (GI to GIV) were slaughtered. Faecal egg counts (FEC) values present a reduction on GII when compared with GI at day 29 p.i. (P < 0.05) and between GIII and GI at day 35 and 36 p.i. (P < 0.05). The values of egg hatchability and number of L3 recovered from the faeces were not statistical analyzed (there was no duplicate data), however there was a considerable reduction between the values from treated and control group. The use of CT on diet did not cause significant difference on blood parameters, body-weight and carcass-weight (P > 0.05). No difference was related on total worm burden between treatments; however, GIV presented lower number of females than GI (P < 0.05). The use of CT could be a promising alternative source to reduce the pasture contamination and to control T. colubriformis infection in sheep.
Resumo:
An antimicrobial peptide produced by a bacterium isolated from the effluent pond of a bovine abattoir was purified and characterized. The strain was characterized by biochemical profiling and 16S rDNA sequencing as Pseudomonas sp. The antimicrobial peptide was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. Direct activity on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was observed. A major band on SDS-PAGE suggested that the antimicrobial peptide has a molecular mass of about 30 kDa. The substance was inhibitory to a broad range of indicator strains, including pathogenic and food spoilage bacteria such as Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, among other. The partially purified antimicrobial substance remained active over a wide temperature range and was resistant to all proteases tested. This substance showed different properties than other antimicrobials from Pseudomonas species, suggesting a novel antimicrobial peptide was characterized.
Resumo:
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This in vitro study evaluated the antimicrobial activity of extracts obtained from Rheedia brasiliensis fruit (bacupari) and its bioactive compound against Streptococcus mutans. Hexane, ethyl-acetate and ethanolic extracts obtained (concentrations ranging from 6.25 to 800 mu g/ml) were tested against S. mutans UA159 through MIC/MBC assays. S. mutans 5-days-old biofilms were treated with the active extracts (100 x MIC) for 0, 1, 2, 3 and 4 h (time-kill) and plated for colony counting (CFU/ml). Active extracts were submitted to exploratory chemical analyses so as to isolate and identify the bioactive compound using spectroscopic methods. The bioactive compound (concentrations ranging from 0.625 to 80 mu g/ml) was then tested through MIC/MBC assays. Peel and seed hexane extracts showed antimicrobial activity against planktonic cells at low concentrations and were thus selected for the time kill test. These hexane extracts reduced S. mutans biofilm viability after 4 h, certifying of the bioactive compound presence. The bioactive compound identified was the polyprenylated benzophenone 7-epiclusianone, which showed a good antimicrobial activity at low concentrations (MIC: 1.25-2.5 mu g/ml; MBC: 10-20 mu g/ml). The results indicated that 7-epiclusianone may be used as a new agent to control S. mutans biofilms; however, more studies are needed to further elucidate the mechanisms of action and the anticariogenic potential of such compound found in R. brasiliensis. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
We have characterized potato (Solanum tuberosum L.) plants expressing a soybean leghemoglobin that is targeted to plastids. Transgenic plants displayed a dwarf phenotype caused by short internode length, and exhibited increased tuberization in vitro. Under in vivo conditions that do not promote tuberization, plants showed smaller parenchymal cells than control plants. Analysis of gibberellin (GA) concentrations indicated that the transgenic plants have a substantial reduction (approximately 10-fold) of bioactive GA(1) concentration in shoots. Application of GA(3) to the shoot apex of the transformed plants completely restored the wild type phenotype suggesting that GA-biosynthesis rather than signal transduction was limiting. Since the first stage of the GA-biosynthetic pathway is located in the plastid, these results suggest that an early step in the pathway may be affected by the presence of the leghemoglobin.
Resumo:
Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME-GC-MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.
Resumo:
Endophytic microorganisms reside asymptomatically within plants and are a source of new bioactive products for use in medicine, agriculture, and industry. Colletotrichum (teleomorph Glomerella) is a fungus widely cited in the literature as a producer of antimicrobial substances. Identification at the species level, however, has been a problem in this type of study. Several authors have reported the presence of endophytic fungi from the medicinal plant Maytenus ilicifolia (espinheira-santa) in Brazil that has antimicrobial activity against various pathogens. Therefore, Colletotrichum strains were isolated from M. ilicifolia and identified based on morphology, RAPD markers, sequence data of the internal transcribed spacer regions (ITS-1 and ITS-2), the 5.8S gene, and species-specific PCR. The analyses suggested the presence of 2 species, Colletotrichum gloeosporioides and Colletotrichum boninense. Two morphological markers were characterized to allow C. gloeosporioides and C. boninense to be distinguished quickly and accurately. The molecular diagnosis of C. boninense was confirmed by using Coll and ITS4 primers. This species of Colletotrichum is reported for the first time in M. ilicifolia.
Resumo:
BACKGROUND: This study reported the effects of the daily intake of anthocyanins and ellagitannins (ET) extracted from blackberries on the markers for oxidative status in healthy rats. RESULTS: The phenolic compounds were administered from three different extracts: an aqueous extract of blackberry (BJ) and its two derived fractions: anthocyanin-enriched (AF) and ET-enriched (EF) fractions. After 35 days` administration, the AF and EF extracts significantly reduced thiobarbituric acid reactive substance levels and increased glutathione levels in the liver, kidney and brain. Plasma antioxidant capacity increased only in the group that received AF. Antioxidant enzyme activity and expression did not follow a pattern of response varying according to the tissues and extracts. A significant increase in the catalase activity was observed only in the plasma of the groups administered anthocyanin-containing extracts, which were the BJ and AF groups. Glutathione peroxidase activity was significantly increased in the liver and brain after EF treatment, and the highest increase in its expression was observed in the livers and brains of rats that received AF and EF, respectively. CONCLUSION: The results demonstrate that long-term intake of anthocyanin and ET through diet affects antioxidant enzyme activity and expression, and enhances oxidative markers in healthy rats. (C) 2010 Society of Chemical Industry
Resumo:
Foods provide essential and bioactive compounds with health-promoting properties such as antioxidant, anti-inflammatory, and hypocholesterolemic activities, which have been related to vitamins A, C, and E and phenolic compounds such as flavonoids. Therefore, the aim of this work was to identify potential sources of bioactive compounds through the determination of flavonoids and ellagic acid contents and the in vitro antioxidant capacity and alpha-glucosidase and alpha-amylase inhibitory activities of Brazilian native fruits and commercial frozen pulps. Camu-camu, cambuci, uxi, and tucuma and commercial frozen pulps of cambuci, cagaita, coquinho azedo, and araca presented the highest antioxidant capacities. Cambuci and cagaita exhibited the highest alpha-glucosidase and alpha-amylase inhibitory activities. Quercetin and kaempferol derivatives were the main flavonoids present in most of the samples. Ellagic acid was detected only in umbu, camu-camu, cagaita, araca, and cambuci. According to the results, native Brazilian fruits can be considered as excellent sources of bioactive compounds.
Resumo:
Whole rice has been widely studied due to the abundance of bioactive compounds in its pericarp. Some of the beneficial effects of these compounds on human health have been attributed to their antioxidant and other biological activities, such as enzyme inhibition. In this work, we evaluated the contents of total, soluble and insoluble phenolic compounds of 6 red and 10 non-pigmented genotypes of whole rice as well as their inhibitory effect on the activity of angiotensin I-converting enzyme (ACE). The effects of cooking on phenolics and their inhibitory activities were also investigated. Red genotypes showed high content of phenolics, mainly soluble compounds, at an average of 409.7 mg ferulic acid eq./100 g, whereas overall lower average levels (99.4 mg ferulic acid eq./100 g) at an approximate soluble/insoluble compound ratio of 1:1 were observed in non-pigmented rice. Pigmented rice displayed a greater inhibitory effect on ACE than non-pigmented rice. In fact, a significant correlation between the content of soluble phenolics and ACE inhibition was observed (r = 0.8985, p < 0.05). In addition to significantly reducing the levels of total phenolics and ACE inhibition, cooking altered the soluble/insoluble compound ratio, especially among red rice genotypes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Several epidemiological and research studies suggest that a high intake of foods rich in natural antioxidants increases the antioxidant capacity of the plasma and reduces the risk of some kinds of cancers, heart diseases, and stroke. These health benefits are attributed to a variety of constituents, including vitamins, minerals, fiber, and numerous phytochemicals, such as flavonoids. Thus, in addition to measuring the composition of the usual macronutrients and micronutrients, it seems important to also measure the antioxidant capacity of foods. For this purpose, 28 foods including fruits, vegetables and commercially-frozen fruit pulps were analyzed for antioxidant capacity. The antioxidant capacity of the foods varied from 0.73 to 19.8 mu mol BHT equiv/g. The highest values were observed for wild mulberries (19.8 mu mol BHT equiv/g), acai fruit pulp (18.2 mu mol BHT equiv/g) and watercress (9.6 mu mol BHT equiv/g). The antioxidant capacities are only indicative of the potential of the bioactive compounds; however, these data are important to explore and understand the role of fruit, vegetables and other foods in health promotion. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This research aimed at determining spectrophotometrically (290 to 320nm) the in vitro Sun Protection Factor (SPF) of sunscreens developed with rutin (R) or succinate rutin (SR), in association or not with UVB filter. Formulations were developed based on phosphate-base O/W emulsions, with (B) or not (A) the presence of polyacrylamide/C13-14 isoparaffin/laureth-7 (PIL), in accordance with the following associations: (a) control; (b) 1.0 % SR; (c) 0.1 % R; (d) 7.5 % ethylhexyl methoxycinnamate (EHMC); (e) 7.5 % EHMC + 0.1 % RS; (0 7.5 % EHMC + 0.1 % R. It was verified a statistical significative elevation of the SPF from 13.93 +/- 0.02 (Af) to 16.63 +/- 0.27 (Bf) and also in relation to 15.53 +/- 0.14 (Bd). According to the results, the EHMC had distinct behavior depending on the presence of bioactive substance and viscosity agent, thus, rutin obtained better profile as a SPF booster in these experimental conditions with the presence of PIL.
Resumo:
Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam. irradiation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Epidemiological studies have shown that beer has positive effects on inhibiting atherosclerosis, decreasing the content of serum low-density lipoprotein cholesterol and triglycerides, by acting as in vivo free radical scavenger. In this research, the antioxidant activity of commercial Brazilian beers (n = 29) was determined by the oxygen radical absorbance capacity (ORAC) and 1,1 -diphenyl-2-picrylhydrazyl (DPPH(center dot)) assays and results were analyzed by chemometrics. RESULTS: The brown ale samples (n = 11) presented higher (P < 0.05) flavonoids (124.01 mg L(-1)), total phenolics (362.22 mg L(-1)), non-flavonoid phenolics (238.21 mg L(-1)), lightness (69.48), redness (35.75), yellowness (55.71), color intensity (66.86), hue angle (59.14), color saturation (0.9620), DPPH(center dot) values (30.96% inhibition), and ORAC values (3,659.36 mu mol Trolox equivalents L(-1)), compared to lager samples (n = 18). Brown ale beers presented higher antioxidant properties (P < 0.05) measured by ORAC (1.93 times higher) and DPPH (1.65 times higher) compared to lager beer. ORAC values correlated well with the content of flavonoids (r = 0.47; P = 0.01), total phenolic compounds (r = 0.44; P < 0.01) and DPPH (r = 0.67; P < 0.01). DPPH values also correlated well to the content of flavonoids (r = 0.69; P < 0.01), total phenolic compounds (r = 0.60; P < 0.01), and non-flavonoid compounds (r = 0.46; P = 0.01). CONCLUSION: The results suggest that brown ale beers, and less significantly lager beers, could be sources of bioactive compounds with suitable free radical scavenging properties. (C) 2010 Society of Chemical Industry